Cry78Ba1, One Novel Crystal Protein from with High Insecticidal Activity against Rice Planthopper.

J Agric Food Chem

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China.

Published: February 2020

The rice planthopper is a very important hemipteran pest that preys on rice and substantially affects the safety of rice production. Moreover, the long-term prevention and control of these pests with chemical pesticides has led to an increase in the resistance of the rice planthopper as well as serious environmental pollution and food safety problems. (Bt) has been used for the efficient and green control of a variety of rice pests. Therefore, based on the high-throughput screening of Bt strains that are active against the rice planthopper, we found that Bt strain B4F11 showed certain insecticidal activity against Fallén, and we have identified a novel insecticidal protein Cry78Ba1 from the Bt strain B4F11, which is expected to provide the specific and safe control of the rice planthopper. The Cry78Ba1 protein is composed of 380 amino acid residues with a molecular weight of 42.55 kDa and contains conserved Ricin_B_Lectin and Toxin_10 superfamily domains. It displays high insecticidal activity against with a lethal concentration (LC) of 9.723 μg/mL. More importantly, this Toxin_10-like protein does not display sequence homology to any known allergen and can be degraded and inactivated rapidly when heated at 90 °C and in simulated gastrointestinal fluid. In summary, Cry78Ba1 has great potential for applications in the efficient and safe prevention and control of the rice planthopper.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b07429DOI Listing

Publication Analysis

Top Keywords

rice planthopper
24
insecticidal activity
12
rice
9
high insecticidal
8
prevention control
8
strain b4f11
8
control rice
8
planthopper
6
cry78ba1
4
cry78ba1 novel
4

Similar Publications

An Insect Effector Mimics Its Host Immune Regulator to Undermine Plant Immunity.

Adv Sci (Weinh)

January 2025

Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China.

Plants activate defense machinery when infested by herbivorous insects but avoid such costs in the absence of herbivory. However, the key signaling pathway regulators underlying such flexibility and the mechanisms that insects exploit these components to disarm plant defense systems remain elusive. Here, it is reported that immune repressor 14-3-3e in rice Oryza sativa (OsGF14e) regulates immune homeostasis.

View Article and Find Full Text PDF

Ethylene-Mediated Production and Emission of Limonene Influence Brown Planthopper Preference for Rice Plants.

J Agric Food Chem

January 2025

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Volatile organic compounds (VOCs) play a key role in plant communication with other organisms in the natural environment. However, the regulatory role of the phytohormone ethylene in volatile production in plants remains unclear. In this study, we demonstrated that the application of an ethylene precursor and amplification of ethylene signaling make rice plants more attractive to brown planthopper (BPH) females for feeding and oviposition.

View Article and Find Full Text PDF

Differentially spliced mitochondrial CYP419A1 contributes to ethiprole resistance in Nilaparvata lugens.

Insect Biochem Mol Biol

January 2025

Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK. Electronic address:

The brown planthopper Nilaparvata lugens is one of the most economically important pests of cultivated rice in Southeast Asia. Extensive use of insecticide treatments, such as imidacloprid, fipronil and ethiprole, has resulted in the emergence of multiple resistant strains of N. lugens.

View Article and Find Full Text PDF

Troponin C is required for copulation and ovulation in Nilaparvata lugens.

Insect Biochem Mol Biol

January 2025

Institute of Insect Sciences, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China. Electronic address:

Troponin C (TnC) is a calcium-binding subunit of the troponin complex that regulates muscle contraction in animals. However, the physiological roles of TnC, especially in insect development and reproduction, remain largely unknown. We identified seven TnC genes encoding four EF-hand motif protein in the rice pest, the brown planthopper Nilaparvata lugens.

View Article and Find Full Text PDF

The cross-resistance to etofenprox in Nilaparvata lugens with a high adaptability to resistant rice variety IR56.

Pest Manag Sci

January 2025

Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

Background: The application of resistant rice varieties and insecticides represents two crucial strategies for managing the brown planthopper (BPH), Nilaparvata lugens (Stål). Insects often employ similar detoxification mechanisms to metabolize plant secondary metabolites and insecticides, which poses a potential risk that BPH population adapted to resistant rice may also obtain resistance to some insecticides.

Results: Here in a BPH population (R-IR56) that has adapted to the resistant rice variety IR56 through continuous selection, the moderate resistance to etofenprox was observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!