Immunoblotting is widely used for the detection of proteins using specific antibodies. We present here a new immunoblotting method, which is characterized by exceptional sensitivity, rapidness, and low consumption of antibodies. A thin conductive layer between touching hydrophilic cellulose membranes instead of polyacrylamide gel is used for the electrophoretic separation of proteins. Contrary to common Western blotting, the separation occurs in nondenaturing conditions. The membrane surface is smoothed by deposition of the cellulose layer and modified with azidophenyl groups, allowing for the photochemical in situ immobilization of proteins, which are carried out after the electrophoresis. Thus, the additional step of transferring the protein from the gel onto the membrane is eliminated. Specific protein bands are then visualized by decoration with magnetic beads. The limit of detection of interleukin IL-1β reaches 0.3 fg or ∼10 molecules, whereas the total blotting time is about 5 min. The application of the technique is demonstrated by the detection of IL-1β, total IgA, and IgA specific to antigen in the exhaled breath samples, obtained from healthy subjects and tuberculosis patients.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c00314DOI Listing

Publication Analysis

Top Keywords

rapid ultrasensitive
4
ultrasensitive gel-free
4
gel-free immunoblotting
4
immunoblotting magnetic
4
magnetic labels
4
labels immunoblotting
4
immunoblotting detection
4
detection proteins
4
proteins specific
4
specific antibodies
4

Similar Publications

Modification of African classical swine fever p30 protein with magnetic nanoparticles and establishment of a novel rapid detection method.

Int J Biol Macromol

December 2024

International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:

African swine fever has caused huge losses to the global pig industry. In the absence of effective vaccines, reliable detection methods are crucial. The p30 protein of ASFV is often used as a target for detection due to its high antigenicity in the early stage of virus replication.

View Article and Find Full Text PDF

A novel approach to developing lateral flow assays (LFAs) for the detection of CYFRA 21-1 (cytokeratin 19 fragment, a molecular biomarker for epithelial-origin cancers) is proposed. Magnetic bioconjugates (MBCs) were employed in combination with advanced optical and magnetic tools to optimize assay conditions. The approach integrates such techniques as label-free spectral-phase interferometry, colorimetric detection, and ultrasensitive magnetometry using the magnetic particle quantification (MPQ) technique.

View Article and Find Full Text PDF

CRISPR/Cas12a regulated preassembled bulb-shaped G-quadruplex signal unit for FL/CM dual-mode ultrasensitive detection of miRNA-155.

Talanta

December 2024

Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China. Electronic address:

High sensitivity and specificity in microRNA detection are of great significance for early cancer screening. This study employed a pre-assembled bulb-shaped G-quadruplex signal unit (G4MB) as a novel and efficient label-free probe. The products amplified by the miRNA-155-targeted exponential amplification reaction (EXPAR) activated the trans-cleavage activity of CRISPR/Cas12a, disrupting the G4MB structure to achieve dual-channel fluorescence/colorimetric (FL/CM) inverse signal output.

View Article and Find Full Text PDF

Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands.

View Article and Find Full Text PDF

Simple and rapid capillarity-assisted ultra-trace detection of thiram on apple surface with a silver nanoparticles/filter paper SERS substrate.

J Hazard Mater

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China. Electronic address:

Thiram is a readily synthesized, cost-effective antimicrobial agent widely used to control diseases in fruits and vegetables. Given the potential health hazards associated with thiram residues and advancements in detection methods, it is crucial to develop a rapid and sensitive technique for detecting these residues on fruit surfaces. Here, we prepared the Ag@filter paper (Ag@FP) surface-enhanced Raman scattering (SERS) substrate in a controlled manner and innovatively developed a capillarity-assisted SERS (CA-SERS) detection method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!