Intraventricular flow patterns during left ventricular assist device support have been investigated via computational fluid dynamics by several groups. Based on such simulations, specific parameters for thrombus formation risk analysis have been developed. However, computational fluid dynamic simulations of complex flow configurations require proper validation by experiments. To meet this need, a ventricular model with a well-defined inflow section was analyzed by particle image velocimetry and replicated by transient computational fluid dynamic simulations. To cover the laminar, transitional, and turbulent flow regime, four numerical methods including the laminar, standard k-omega, shear-stress transport, and renormalized group k-epsilon were applied and compared to the particle image velocimetry results in 46 different planes in the whole left ventricle. The simulated flow patterns for all methods, except renormalized group k-epsilon, were comparable to the flow patterns measured using particle image velocimetry (absolute error over whole left ventricle: laminar: 10.5, standard k-omega: 11.3, shear-stress transport: 11.3, and renormalized group k-epsilon: 17.8 mm/s). Intraventricular flow fields were simulated using four numerical methods and validated with experimental particle image velocimetry results. In the given setting and for the chosen boundary conditions, the laminar, standard K-omega, and shear-stress transport methods showed acceptable similarity to experimental particle image velocimetry data, with the laminar model showing the best transient behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780364 | PMC |
http://dx.doi.org/10.1177/0391398820904056 | DOI Listing |
Nat Commun
January 2025
School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
Radioactive molecular iodine (I) is a critical volatile pollutant generated in nuclear energy applications, necessitating sensors that rapidly and selectively detect low concentrations of I vapor to protect human health and the environment. In this study, we design and prepare a three-component sensing material comprising reduced graphene oxide (rGO) as the substrate, silver iodide (AgI) particles as active sites, and polystyrene sulfonate as an additive. The AgI particles enable reversible adsorption and conversion of I molecules into polyiodides, inducing substantial charge density variation in rGO.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:
Probiotics have brought many health benefits to the human body. However, their viability during gastrointestinal transit is a concern. Therefore, this study selected Mesona chinensis polysaccharide (MCP), an edible natural polysaccharide, and constructed a new type of microcapsules using MCP as raw material to prepare cross-linked calcium ions through a microfluidic system as an ideal intestinal targeting carrier to achieve precise delivery of bioactive substances.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Cyclotron Facility, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
This study aimed to synthesize MgFeLnO (where, Ln = Yb, Pr, Gd, and Nd) ferrite nanoparticles via the sol-gel process and investigate their structural, morphological, and magnetic properties for potential hyperthermia applications. X-ray diffraction analysis (XRD) confirmed the cubic spinel structure for all samples. Transmission electron microscopy (TEM) images revealed nanometer-scale dimensions and nearly spherical morphology.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Physics, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran. Electronic address:
Gums are commonly used in the food industry for their functional properties. However, the growing demand for sustainable and alternative sources has drawn attention to the need for identifying and characterizing non-conventional gum sources with comparable or enhanced features. This study aimed to investigate the exudate gum from apricot trees (Prunus armeniaca) in Malatya as a potential alternative.
View Article and Find Full Text PDFReprod Toxicol
January 2025
Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea; Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
Nanoplastics (NPs) and microplastics (MPs) have become a global concern in recent years. Most current research on the impact of plastics on obstetrics has focused on their accumulation in specific tissues in animal models and the disease-causing potential of MPs. However, there is a relative lack of research on the cellular changes caused by the accumulation of MPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!