Mouse lung developmental maturation and final alveolarization phase begin at birth. During this dynamic process, alveolar cells modify their morphology and anchorage to the extracellular matrix. In particular, alveolar epithelial cell (AEC) type I undergo cytoplasmic flattening and folding to ensure alveoli lining. We developed FACS conditions for simultaneous isolation of alveolar epithelial and endothelial cells in the absence of specific reporters during the early and middle alveolar phase. We evidenced for the first time a pool of extractable epithelial cell populations expressing high levels of podoplanin at postnatal day (pnd)2, and we confirmed by RT-qPCR that these cells are already differentiated but still immature AEC type I. Maturation causes a decrease in isolation yields, reflecting the morphological changes that these cell populations are undergoing. Moreover, we find that major histocompatibility complex II (MHCII), reported as a good marker of AEC type II, is poorly expressed at pnd2 but highly present at pnd8. Combined experiments using LysoTracker and MHCII demonstrate the de novo acquisition of MCHII in AEC type II during lung alveolarization. The lung endothelial populations exhibit FACS signatures from vascular and lymphatic compartments. They can be concomitantly followed throughout alveolar development and were obtained with a noticeable increased yield at the last studied time point (pnd16). Our results provide new insights into early lung alveolar cell isolation feasibility and represent a valuable tool for pure AEC type I preparation as well as further in vitro two- and three-dimensional studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00227.2019 | DOI Listing |
Int J Surg
January 2025
Department of thoracic and cardiovascular surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, China.
Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.
View Article and Find Full Text PDFJ Thromb Thrombolysis
December 2024
Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia.
Animal models of thrombosis play a critical role in research, helping us understand the mechanisms of hemostasis and thrombus formation, as well as in the screening of anti-thrombotic drugs. This study aimed to evaluate the safety profile of two anticoagulants in murine research and to assess coagulation parameters, including prothrombin time (PT) and activated partial thromboplastin time (aPTT), using the VETSCAN VSpro coagulation analyzer in wild-type (C57BL/6) mice following administration of anticoagulants. Two experiments were conducted involving a total of sixty wild-type mice that received two common anticoagulants.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2024
Keio University School of Medicine, Division of Pulmonary Medicine, Department of Medicine, Tokyo, Japan.
Airway epithelial cells (AECs) play an essential role in the immune response during bacterial pneumonia. Secreted and transmembrane 1a (Sectm1a) is specifically expressed in AECs during early (SP) infection. However, its function remains largely unexplored.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
December 2024
College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China. Electronic address:
The adaptation of lung cells to high-altitude environments represents a notable gap in our understanding of how animals cope with hypoxic conditions. Alveolar epithelial cells type II (AEC II) are crucial for lung development and repair. However, their, specific role in the adaptation of yaks to high-altitude environments remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!