Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have been puzzled by the involvement of weak organic and inorganic bases in the synthesis of metal-N-heterocyclic carbene (NHC) complexes. Such bases are insufficiently strong to permit the presumed required deprotonation of the azolium salt (the carbene precursor) prior to metal binding. Experimental and computational studies provide support for a base-assisted concerted process that does not require free NHC formation. The synthetic protocol was found applicable to a number of transition-metal- and main-group-centered NHC compounds and could become the synthetic route of choice to form M-NHC bonds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202000564 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!