Transition-Metal-Catalyzed Regioselective Functionalization of Monophosphino-o-Carboranes.

Chemistry

State Key Laboratory of Synthetic Chemistry and, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.

Published: April 2020

A facile approach to the synthesis of diaryl- and dialkyl-substituted monophosphino-o-carboranes by rhodium(I)-catalyzed phosphine-directed B -H activation has been developed for the first time. Upon switching rhodium(I) to palladium(II), C-arylated and B -halogenated products were obtained by using tBuOLi and Li CO as base, respectively. These discoveries provide some simple and efficient approaches to the modification of monophosphino-o-carboranes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201905647DOI Listing

Publication Analysis

Top Keywords

transition-metal-catalyzed regioselective
4
regioselective functionalization
4
functionalization monophosphino-o-carboranes
4
monophosphino-o-carboranes facile
4
facile approach
4
approach synthesis
4
synthesis diaryl-
4
diaryl- dialkyl-substituted
4
dialkyl-substituted monophosphino-o-carboranes
4
monophosphino-o-carboranes rhodiumi-catalyzed
4

Similar Publications

Recent Advances in Asymmetric Organometallic Electrochemical Synthesis (AOES).

Acc Chem Res

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments.

View Article and Find Full Text PDF

Copper-Catalyzed Intermolecular [2 + 2 + 2] Annulation of Diynes with Alkynes: Construction of Carbazoles.

Org Lett

January 2025

Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Transition-metal-catalyzed [2 + 2 + 2] annulation of alkynes is an efficient pathway for the synthesis of aromatic compounds. However, most of the established methods require noble metal catalysts. Herein, we report a copper-catalyzed intermolecular [2 + 2 + 2] annulation of diynes with alkynes through vinyl cation intermediates, enabling the atom-economical preparation of biologically important carbazole skeletons.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new method for remote functionalization that uses a borenium ion as a catalyst instead of traditional transition metals, addressing issues like metal residue and catalyst poisoning.
  • The process allows for site-selective modification of molecules by enabling the "walking" of a boron group along a carbon chain, ultimately favoring the formation of α-borylation products.
  • This metal-free approach shows compatibility with various functional groups and can facilitate the synthesis of unique compounds, including those helpful in creating bioactive molecules.
View Article and Find Full Text PDF

ConspectusIn the past decade, single-atom skeletal editing, which involves the precise insertion, deletion, or exchange of single atoms in the core skeleton of a molecule, has emerged as a promising synthetic strategy for the rapid construction or diversification of complex molecules without laborious synthetic processes. Among them, carbene-initiated skeletal editing is particularly appealing due to the ready availability and diverse reactivities of carbene species. The initial endeavors to modify the core skeleton of heteroarenes through carbon-atom insertion could date back to 1881, when Ciamician and Denstedt described the conversion of pyrroles to pyridines by trapping haloform-derived free carbene.

View Article and Find Full Text PDF

Distinctive, green, innovative, and well-organized photoinduced (metal- or photocatalyst-free) regioselective decarbonylative and decarboxylative C-O bond functionalization protocols to access aryl 2-aminobenzoates and 2-substituted benzoxazinone derivatives in excellent yields have been devised. These are achieved through the chemoselective scission of isatoic anhydride with ketones, diaryliodonium triflate, nitroalkene, phthalazinone, and phenol derivatives, which, in turn, served as the representative "electrophilic and nucleophilic" coupling partners. Control experiments and DFT calculations reveal that electrophilic radical-bearing coupling partners specifically follow the decarbonylation pathway, while nucleophilic radical-bearing conjugates facilitate the decarboxylation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!