The stability of a single-atom catalyst is directly related to its preparation and applications, especially for high-loading single-atom catalysts. Here, the effect of a coordination environment induced by nitrogen (N) atoms coordinated with iron on the kinetic and thermodynamic stabilities of single-atom iron catalysts supported with carbon-based substrates (Fe/CS) was investigated by density functional theory (DFT) calculations. Five Fe/CS with different numbers of N atoms were modelled. The kinetic stability was evaluated by analyzing the migration paths of iron atoms and energy barriers. The thermodynamic stability was studied by calculating the adsorption and formation energies. Our results indicated that the coordination environment induced by N can promote the kinetic and thermodynamic stability of Fe/CS. N atoms on the substrate promote the kinetic stability by raising the energy barrier for iron migration and not only increase the thermodynamic stability, but also contribute to catalyst synthesis. Doping N on the substrate enhances charge transfer between the iron atoms and substrates simultaneously improving the kinetic and thermodynamic stabilities. This theoretical research provides guidance for synthesizing stable and high loading single-atom catalysts by tuning the coordination environment of single-atom elements.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp05349bDOI Listing

Publication Analysis

Top Keywords

coordination environment
16
kinetic thermodynamic
16
thermodynamic stability
16
stability single-atom
8
single-atom iron
8
iron catalysts
8
single-atom catalysts
8
environment induced
8
thermodynamic stabilities
8
kinetic stability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!