Muscle undergoes progressive weakening and regenerative dysfunction with age due in part to the functional decline of skeletal muscle stem cells (MuSCs). MuSCs are heterogeneous but whether their gene expression changes with age and the implication of such changes are unclear. Here we show that in mice, Growth arrest-specific gene 1 (Gas1) is expressed in a small subset of young MuSCs with its expression progressively increasing in larger fractions of MuSCs later in life. Over-expression of Gas1 in young MuSCs and inactivation of Gas1 in aged MuSCs support that Gas1 reduces the quiescence and self-renewal capacity of MuSCs. Gas1 reduces Ret signaling, which is required for MuSC quiescence and self-renewal. Indeed, we show that the Ret ligand, Glial Cell-Derived Neurotrophic Factor (GDNF), can counteract Gas1 by stimulating Ret signaling and enhancing MuSC self-renewal and regeneration, thus improving muscle function. We propose that strategies aimed to target this pathway can be exploited to improve the regenerative decline of muscle stem cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000153PMC
http://dx.doi.org/10.1038/s42255-019-0110-3DOI Listing

Publication Analysis

Top Keywords

muscle stem
12
stem cells
8
young muscs
8
gas1 reduces
8
quiescence self-renewal
8
ret signaling
8
gas1
7
muscs
7
muscle
5
stem cell
4

Similar Publications

Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Background: Pelvic trauma can have long-lasting debilitating effects, including severe erectile dysfunction (ED) in men. While there are effective treatments for ED, these treat the symptoms not the cause. Those who suffer from an acute traumatic injury to the neurovascular supply of penis, may benefit from regenerative therapy.

View Article and Find Full Text PDF

Challenges in cellular agriculture: lessons from Pacific white shrimp, Litopenaeus vannamei.

In Vitro Cell Dev Biol Anim

January 2025

Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.

The overall goal of this research was to develop an embryonic stem cell (ESC) line from the Pacific white shrimp, Litopenaeus vannamei, to support production of cell-based cultivated seafood products towards meeting a growing global demand for sustainable seafood. It was hypothesized that characteristics of ESCs, such as high proliferation and pluripotency, would facilitate development of a continuous cell line that could be triggered to differentiate into a muscle cell phenotype. The targeted approach was based on collection of ESCs from fertilized shrimp eggs at the blastomere stage.

View Article and Find Full Text PDF

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.

View Article and Find Full Text PDF

In vitro stretch modulates mitochondrial dynamics and energy metabolism to induce smooth muscle differentiation in mesenchymal stem cells.

FASEB J

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!