To evaluate the localization of responses to stimulation of the periodontal mechanoreceptors in the primary somatosensory cortex, somatosensory evoked fields (SEFs) were measured for stimulation of the left mandibular canine and first molar using magnetoencephalography in 25 healthy subjects. Tactile stimulation used a handmade stimulus device which recorded the trigger at the moment of touching the teeth.SEFs for the canine and first molar were detected in 20 and 19 subjects, respectively. Both responses were detected in the bilateral hemispheres. The latency for the canine was 62.1 ± 12.9 ms in the ipsilateral hemisphere and 65.9 ± 14.8 ms in the contralateral hemisphere. The latency for the first molar was 47.4 ± 6.6 ms in the ipsilateral hemisphere and 47.8 ± 9.1 ms in the contralateral hemisphere. The latency for the first molar was significantly shorter than that for the canine. The equivalent current dipoles were estimated in the central sulcus and localized anteroinferiorly compared to the locations for the SEFs for the median nerve. No significant differences in three-dimensional coordinates were found between the canine and first molar. These findings demonstrate the precise location of the teeth within the orofacial representation area in the primary somatosensory cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993012 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2020.e03244 | DOI Listing |
BMC Oral Health
January 2025
Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt.
Purpose: Investigating high performance thermoplastic polymers as substitutes to titanium alloy, in fabrication of implants and attachments to support mandibular overdenture, aiming to overcome stress shielding effect of titanium alloy implants. AIM OF STUDY: Assessment of stress distribution in polymeric prosthetic components and bone around polymeric implants, in case of implant-supported mandibular overdenture.
Materials And Methods: 3D finite element model was established for mandibular overdenture, supported bilaterally by two implants at canine region, and retained by two ball attachments.
Bio Protoc
January 2025
Department of Stomatology, Peking Union Medical College Hospital, Beijing, China.
Pulpitis is an important and prevalent disease within the oral cavity. Thus, animal models are necessary tools for basic research focused on pulpitis. Researchers worldwide often use dogs and miniature pigs to construct animal models of pulpitis.
View Article and Find Full Text PDFInt J Comput Dent
January 2025
Purpose: The purpose of the study was to investigate the accuracy of complete-arch intraoral scans for all-on-4 implant treatment under simulated intraoral variables.
Materials And Methods: A maxillary model designed to receive 4 implants in the regions of first molars and canines was used. Intraoral digital scans were completed in a simulation device by simulating two2 different clinical conditions: normal intraoral variables (NIV) and limited intraoral variables (LIV).
Medicina (Kaunas)
January 2025
Faculty in Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh P.O. Box 11545, Saudi Arabia.
The palate's morphological characteristics are of great importance, especially in periodontology, where the palatine tissue represents a source of tissue graft for multiple mucogingival surgeries. This study aimed to estimate the amount of donor tissue available through the average palatal height and average location of the greater palatine artery in the Saudi population according to age and gender. Digital casts for adult Saudi patients at the age of 18-60 years old with a mean age of 37.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
Background: Establishing accurate, reliable, and convenient methods for enamel segmentation and analysis is crucial for effectively planning endodontic, orthodontic, and restorative treatments, as well as exploring the evolutionary patterns of mammals. However, no mature, non-destructive method currently exists in clinical dentistry to quickly, accurately, and comprehensively assess the integrity and thickness of enamel chair-side. This study aims to develop a deep learning work, 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!