This study investigates misregistration issues between Landsat-8/OLI and Sentinel-2A/MSI at 30 m resolution, and between multi-temporal Sentinel-2A images at 10 m resolution using a phase correlation approach and multiple transformation functions. Co-registration of 45 Landsat-8 to Sentinel-2A pairs and 37 Sentinel-2A to Sentinel-2A pairs were analyzed. Phase correlation proved to be a robust approach that allowed us to identify hundreds and thousands of control points on images acquired more than 100 days apart. Overall, misregistration of up to 1.6 pixels at 30 m resolution between Landsat-8 and Sentinel-2A images, and 1.2 pixels and 2.8 pixels at 10 m resolution between multi-temporal Sentinel-2A images from the same and different orbits, respectively, were observed. The non-linear Random Forest regression used for constructing the mapping function showed best results in terms of root mean square error (RMSE), yielding an average RMSE error of 0.07±0.02 pixels at 30 m resolution, and 0.09±0.05 and 0.15±0.06 pixels at 10 m resolution for the same and adjacent Sentinel-2A orbits, respectively, for multiple tiles and multiple conditions. A simpler 1 order polynomial function (affine transformation) yielded RMSE of 0.08±0.02 pixels at 30 m resolution and 0.12±0.06 (same Sentinel-2A orbits) and 0.20±0.09 (adjacent orbits) pixels at 10 m resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999662PMC
http://dx.doi.org/10.1080/17538947.2017.1304586DOI Listing

Publication Analysis

Top Keywords

pixels resolution
24
phase correlation
12
sentinel-2a images
12
sentinel-2a
9
co-registration landsat-8
8
resolution
8
resolution multi-temporal
8
multi-temporal sentinel-2a
8
landsat-8 sentinel-2a
8
sentinel-2a pairs
8

Similar Publications

There is a growing understanding of the structural dynamics of biological molecules fueled by x-ray crystallography experiments. Time-resolved serial femtosecond crystallography (TR-SFX) with x-ray Free Electron Lasers allows the measurement of ultrafast structural changes in proteins. Nevertheless, this technique comes with some limitations.

View Article and Find Full Text PDF

MITIGATING OVER-SATURATED FLUORESCENCE IMAGES THROUGH A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK.

Proc IEEE Int Symp Biomed Imaging

May 2024

Department of Electrical and Computer Engineering, Nashville, TN, USA.

Multiplex immunofluorescence (MxIF) imaging is a critical tool in biomedical research, offering detailed insights into cell composition and spatial context. As an example, DAPI staining identifies cell nuclei, while CD20 staining helps segment cell membranes in MxIF. However, a persistent challenge in MxIF is saturation artifacts, which hinder single-cell level analysis in areas with over-saturated pixels.

View Article and Find Full Text PDF

Evaluation of charge summing correction in CdTe-based photon-counting detectors for breast CT: performance metrics and image quality.

J Med Imaging (Bellingham)

January 2025

U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.

Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).

Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.

View Article and Find Full Text PDF

The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.

View Article and Find Full Text PDF

Multi-Person Localization Based on a Thermopile Array Sensor with Machine Learning and a Generative Data Model.

Sensors (Basel)

January 2025

Laboratory of Adaptive Lighting Systems and Visual Processing, Technical University of Darmstadt, Hochschulstr. 4a, 64289 Darmstadt, Germany.

Thermopile sensor arrays provide a sufficient counterbalance between person detection and localization while preserving privacy through low resolution. The latter is especially important in the context of smart building automation applications. Current research has shown that there are two machine learning-based algorithms that are particularly prominent for general object detection: You Only Look Once (YOLOv5) and Detection Transformer (DETR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!