Objective: The current study aimed to assess the profiles of plasma amino acids, serum ammonia and oxidative stress status among autistic children in terms of electroencephalogram findings and clinical severity among the cohort of autistic Egyptian children.
Patients And Methods: The present study included 118 Egyptian children categorized into 54 children with autism who were comparable with 64 healthy controls. Clinical assessments of cases were performed using CARS in addition to EEG records. Plasma amino acids were measured using high-performance liquid chromatography (HPLC), while, serum ammonia and oxidative stress markers were measured using colorimetric methods for all included children.
Results: The overall results revealed that 37.04% of cases had abnormal EEG findings. Amino acid profile in autistic children showed statistically significant lower levels of aspartic acid, glycine, β-alanine, tryptophan, lysine and proline amino acids with significantly higher asparagine amino acid derivative levels among autistic patients versus the control group (p˂0.05). There were significantly higher serum ammonia levels with significantly higher total oxidant status (TOS) and oxidative stress index (OSI) values among the included autistic children vs controls (p˂0.05). There were significantly negative correlations between CARS with aspartic acid (r=-0.269, P=0.049), arginine (r= - 0.286, p= 0.036), and TAS (r= -0.341, p= 0.012), and significantly positive correlations between CARS with TOS (r=0.360, p= 0.007) and OSI (r= 0.338, p= 0.013).
Conclusion: Dysregulated amino acid metabolism, high ammonia and oxidative stress were prevalent among autistic children and should be considered in autism management. Still EEG records were inconclusive among autistic children, although may be helpful in assessment autism severity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954634 | PMC |
http://dx.doi.org/10.2147/NDT.S233105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!