Download full-text PDF

Source

Publication Analysis

Top Keywords

[local changes
4
changes concentration
4
concentration acid
4
acid mitochondrial
4
mitochondrial membranes]
4
[local
1
concentration
1
acid
1
mitochondrial
1
membranes]
1

Similar Publications

Habitat fragmentation increases the risk of local extinction of small reptiles: A case study on Phrynocephalus przewalskii.

Ecotoxicol Environ Saf

January 2025

Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address:

Habitat fragmentation represents a multifaceted global conservation threat, exerting both direct and indirect effects on individual animals and communities. Reptiles, particularly smaller species with limited migratory abilities, are especially vulnerable to these changes. This study examines how small reptiles adapt their life history strategies in fragmented habitats and determines whether their responses are primarily due to phenotypic plasticity or genetic adaptation.

View Article and Find Full Text PDF

Adaptation optimizes sensory encoding for future stimuli.

PLoS Comput Biol

January 2025

Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli.

View Article and Find Full Text PDF

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Single cell approaches define neural stem cell niches and identify microglial ligands that can enhance precursor-mediated oligodendrogenesis.

Cell Rep

January 2025

Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.

View Article and Find Full Text PDF

Purpose: This study investigated epidemiologic features of patients with pancreatic cancer in Korea, according to the histologic subtypes.

Methods: The Korea Central Cancer Registry data on patients with pancreatic cancer from 1999 to 2019 were reviewed. The 101,446 patients with pancreatic cancer (C25 based on the International Classification of Diseases, 10th revision) were allocated according to the following morphological codes: A, endocrine; B, carcinoma excluding cystic and mucinous; C, cystic or mucinous; D, acinar cell; and E, sarcoma and soft tissue tumor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!