Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mercury (Hg), as a highly harmful environmental pollutant, poses severe ecological and health risks even at low concentrations. Accurate and sensitive methods for detecting Hg ions in aquatic environments are highly needed. In this work, we developed a highly sensitive fluorescence sensor for Hg detection with an integrated use of biosynthetic CdSe/CdS quantum dots (QDs) and liposome carrier signal amplification. To construct such a sensor, three single-stranded DNA probes were rationally designed based on the thymine-Hg-thymine (T-Hg-T) coordination chemical principles and by taking advantage of the biocompatibility and facile-modification properties of the biosynthetic QDs. Hg could be determined in a range from 0.25 to 100 nM with a detection limit of 0.01 nM, which met the requirements of environmental sample detection. The sensor also exhibited a high selectivity for Hg detection in the presence of other high-level metal ions. A satisfactory capacity of the sensor for detecting environmental samples including tap water, river water, and landfill leachate was also demonstrated. This work opens up a new application scenario for biosynthetic QDs and holds a great potential for environmental monitoring applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b05508 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!