Efficient All-Optical Plasmonic Modulators with Atomically Thin Van Der Waals Heterostructures.

Adv Mater

Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.

Published: March 2020

All-optical modulators are attracting significant attention due to their intrinsic perspective on high-speed, low-loss, and broadband performance, which are promising to replace their electrical counterparts for future information communication technology. However, high-power consumption and large footprint remain obstacles for the prevailing nonlinear optical methods due to the weak photon-photon interaction. Here, efficient all-optical mid-infrared plasmonic waveguide and free-space modulators in atomically thin graphene-MoS heterostructures based on the ultrafast and efficient doping of graphene with the photogenerated carrier in the monolayer MoS are reported. Plasmonic modulation of 44 cm is demonstrated by an LED with light intensity down to 0.15 mW cm , which is four orders of magnitude smaller than the prevailing graphene nonlinear all-optical modulators (≈10 mW cm ). The ultrafast carrier transfer and recombination time of photogenerated carriers in the heterostructure may achieve ultrafast modulation of the graphene plasmon. The demonstration of the efficient all-optical mid-infrared plasmonic modulators, with chip-scale integrability and deep-sub wavelength light field confinement derived from the van der Waals heterostructures, may be an important step toward on-chip all-optical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201907105DOI Listing

Publication Analysis

Top Keywords

efficient all-optical
12
plasmonic modulators
8
modulators atomically
8
atomically thin
8
van der
8
der waals
8
waals heterostructures
8
all-optical modulators
8
all-optical mid-infrared
8
mid-infrared plasmonic
8

Similar Publications

In the field of image processing, optical neural networks offer advantages such as high speed, high throughput, and low energy consumption. However, most existing coherent optical neural networks (CONN) rely on coherent light sources to establish transmission models. The use of laser inputs and electro-optic modulation devices at the front end of these neural networks diminishes their computational capability and energy efficiency, thereby limiting their practical applications in object detection tasks.

View Article and Find Full Text PDF

With the increase sizes of training datasets and models, the bottleneck in distributed machine learning (DML) training has shifted from computation to communication. To address this bottleneck, we propose an all-optical switching network architecture for accelerating the communication phase of DML training. Experimental results validate packets with error-free and 385 ns server-to-server low-latency communication at traffic load of 0.

View Article and Find Full Text PDF

This study investigates (EIG) in a nanohybrid configuration involving a semiconductor quantum dot (SQD) and a core-shell bimetallic nanoparticle coated with graphene. The goal is to optimize interactions between plasmons and excitons. This is achieved by utilizing nanoparticles covered with graphene, which enhances control over surface plasmons.

View Article and Find Full Text PDF

We develop fs laser-fabricated asymmetric couplers and zig-zag arrays consisting of single- and two-mode waveguides with bipartite Kerr nonlinearity in borosilicate (BK7) glass substrates. The fundamental mode ( orbital) is near resonance with the neighboring higher-order orbital, causing efficient light transfer at low power. Due to Kerr nonlinearity, the coupler works as an all-optical switch between and orbitals.

View Article and Find Full Text PDF

All-Optical Generation and Detection of Coherent Acoustic Vibrations in Single Gallium Phosphide Nanoantennas Probed near the Anapole Excitation.

Nano Lett

January 2025

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!