Background: Mitochondria play a fundamental role in the pathogenesis of alcoholic liver disease (ALD). The preservation of functional mitochondria during toxic alcohol insults is essential for cell survival and is maintained by key processes known as mitochondrial dynamics, including fragmentation and fusion, which are regulated by mitochondria-shaping proteins (MSP). We have shown mitochondrial dynamics to be distorted by alcohol in cellular and animal models, but the effect in humans remains unknown.

Methods: Hepatic gene expression of the main MSP involved in the mitochondrial fusion and fragmentation pathways was evaluated in patients with alcoholic hepatitis (AH) by DNA microarray (n = 15) and Reverse Transcription Polymerase Chain Reaction (n = 32). The activation of dynamin-1-like protein (Drp1) was also investigated in mitochondria isolated from liver biopsies of ALD patients (n = 8). The effects of alcohol on mitochondrial dynamics and on MSP protein expression were studied in human precision-cut liver slices (PCLS) exposed for 24 hours to increasing doses of ethanol (EtOH; 50 to 250 mM).

Results: A profound hyperactivation of the fragmentation pathway was observed in AH patients, with a significant increase in the expression of Drp1 and its adapters/receptors. The translocation of Drp1 to the mitochondria was also induced in patients with severe ALD and was affected in the PCLS with short-term exposure to EtOH but only mildly. The fusion pathway was not altered in ALD, and this was confirmed in the PCLS model.

Conclusions: The present study reveals the role of mitochondrial dynamics in human ALD, confirming our previous observations in animal and cell culture models of ALD. Taken together, we show that alcohol has a significant impact on the fragmentation pathway, and we confirm Drp1 as a potential therapeutic target in severe ALD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166173PMC
http://dx.doi.org/10.1111/acer.14299DOI Listing

Publication Analysis

Top Keywords

mitochondrial dynamics
20
alcoholic liver
8
liver disease
8
fragmentation pathway
8
severe ald
8
ald
7
dynamics
5
mitochondrial
5
perturbations mitochondrial
4
dynamics closely
4

Similar Publications

In vitro stretch modulates mitochondrial dynamics and energy metabolism to induce smooth muscle differentiation in mesenchymal stem cells.

FASEB J

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.

View Article and Find Full Text PDF

WDR74-Mediated Ribosome Biogenesis and Proteome Dynamics During Mouse Preimplantation Development.

Genes Cells

January 2025

Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.

Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.

View Article and Find Full Text PDF

Mitochondria are important organelles that regulate cellular energy and biosynthesis, as well as maintain the body's response to environmental stress. Their dynamics and autophagy influence occurrence of cellular function, particularly under stressful conditions. They can generate reactive oxygen species (ROS) which is a major contributor to inflammatory diseases such as ulcerative colitis (UC).

View Article and Find Full Text PDF

Engineering EVs-Mediated mRNA Delivery Regulates Microglia Function and Alleviates Depressive-Like Behaviors.

Adv Mater

January 2025

Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China.

The development of new non-neurotransmitter drugs is an important supplement to the clinical treatment of major depressive disorder. The latest development of mRNA therapy provides the possibility for the treatment of some major diseases. The endoplasmic reticulum (ER) and mitochondria constitute a highly interconnected set of fundamental organelles within cells.

View Article and Find Full Text PDF

Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!