Introduction: We previously reported that CD133 expression correlated with the recurrence pattern of glioblastoma (GBM). Subventricular zone (SVZ) involvement may also be associated with distant recurrence in GBM. Therefore, we herein investigated whether the combined analysis of SVZ involvement and CD133 expression is useful for predicting the pattern of GBM recurrence.

Materials And Methods: We retrospectively analyzed 167 cases of GBM. Tumors were divided into four groups based on spatial relationships between contrast-enhanced lesions (CEL) and the SVZ or cortex (Ctx) on MRI. The initial recurrence pattern (local/distant) was obtained from medical records. To identify factors predictive of recurrence, we examined CD133 expression by immunohistochemical, clinical (age, sex, KPS, Ki-67 labeling index, surgery, and MRI characteristics), and genetic (IDH1, MGMT, and BRAF) factors.

Results: The CD133 expression rate was higher in SVZ-positive tumors than in SVZ-negative tumors (P = 0.046). Distant recurrence was observed in 21% of patients, and no significant difference was noted in recurrence patterns among the four groups. However, strong CD133 expression was associated with a shorter time to distant recurrence in univariate, multivariate, and propensity-matched scoring analyses (P < 0.0001, P = 0.001, and P = 0.0084, respectively). In the combined analysis, distant recurrence was the most frequent (70%) in group III (SVZ-negative, Ctx-positive) GBM and those with high CD133 expression rates (≥ 15%).

Conclusion: An integrated analysis of CD133 expression and MRI-based tumor classification may be useful for predicting the recurrence pattern of GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-019-03381-yDOI Listing

Publication Analysis

Top Keywords

cd133 expression
24
distant recurrence
12
recurrence patterns
8
subventricular zone
8
involvement cd133
8
recurrence pattern
8
svz involvement
8
recurrence
7
cd133
6
expression
6

Similar Publications

Sickle cell disease (SCD) is a devastating hemolytic disease, marked by recurring bouts of painful vaso-occlusion, leading to tissue damage from ischemia/reperfusion pathophysiology. Central to this process are oxidative stress, endothelial cell activation, inflammation, and vascular dysfunction. The endothelium exhibits a pro-inflammatory, pro-coagulant, and enhanced permeability phenotype.

View Article and Find Full Text PDF

MicroRNA Profiling of PRELI-Modulated Exosomes and Effects on Hepatic Cancer Stem Cells.

Int J Mol Sci

December 2024

EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea.

The increasing incidence and mortality rates of liver cancer have heightened the demand for the development of effective anticancer drugs with minimal side effects. In this study, the roles of exosomes derived from liver cancer stem cells (LCSCs) with PRELI (Protein of Relevant Evolutionary and Lymphoid Interest) modulation and their miRNAs were investigated to explore their therapeutic properties for liver cancer. Various techniques, such as miRNA profiling, microRNA transfection, overexpression, flow cytometry, Western blotting, and immunocytochemistry, were used to evaluate the effects of exosomes under PRELI up- and downregulation.

View Article and Find Full Text PDF

Age-Related Choroidal Involution Is Associated with the Senescence of Endothelial Progenitor Cells in the Choroid.

Biomedicines

November 2024

Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada.

Choroidal involution is a common feature of age-related ischemic retinopathies such as age-related macular degeneration (AMD). It is now well recognized that endothelial progenitor cells (EPCs) are essential to endothelial repair processes and in maintaining vascular integrity. However, the contribution of EPCs and the role of senescence in age-related choroidal vascular degeneration remain to be investigated.

View Article and Find Full Text PDF

TClC effectively suppresses the growth and metastasis of NSCLC via polypharmacology.

Bioact Mater

March 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China.

Despite significant advances in targeted therapies and immunotherapies, non-small cell lung cancer (NSCLC) continues to present a global health challenge, with a modest five-year survival rate of 28 %, largely due to the emergence of treatment-resistant and metastatic tumors. In response, we synthesized a novel bioactive compound, ethyl 6-chlorocoumarin-3-carboxylyl L-theanine (TClC), which significantly inhibited NSCLC growth, epithelial mesenchymal transition (EMT), migration, and invasion and tumor growth and metastasis without inducing toxicity. TClC disrupts autocrine loops that promote tumor progression, particularly in stem-like CD133-positive NSCLC (CD133+ LC) cells, which are pivotal in tumor metastasis.

View Article and Find Full Text PDF

Background: CD133 is regarded as a marker and target for cancer stem cells (CSCs) in various types of tumors, including hepatocellular carcinoma (HCC). The expressions of CD133 and programmed cell death ligand 1 (PD-L1) in CSCs exhibit a positive feedback regulatory effect. This effect promotes CSC proliferation and immune escape, ultimately leading to tumor progression and poor prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!