West Africa's CO emissions: investigating the economic indicators, forecasting, and proposing pathways to reduce carbon emission levels.

Environ Sci Pollut Res Int

School of Management and Economics, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, Sichuan, China.

Published: April 2020

AI Article Synopsis

Article Abstract

This paper investigates the nexus between carbon emissions (CO) and economic growth in West Africa based on the Environment Kuznets Curve (EKC) hypothesis by utilizing spatial panel data technique to check the possible effect of spatial dependence among countries in West Africa. Our empirical findings suggest the presence of spatial dependence of carbon emissions distribution in West Africa. By examining the existence of EKC embedded within the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) approach, we conclude an inverse N-trajectory of the relationship between carbon emissions and economic growth. Furthermore, to mitigate global carbon emissions, we utilize a recurrent neural network (RNN) bidirectional long short-term memory (BiLSTM) algorithm devoid of exogenous variables and assumptions to forecast carbon emissions from the year 2015 to the year 2030 based on the predictive accuracy of our formulated algorithm. Due to the upward trends in future emission levels, we propose emissions mitigation pathways for countries in West Africa to still hold carbon emissions-related global warming well below 1.5 and 2 °C. Such mitigation pathways proposed could help implement strategic policies to minimize carbon emissions to a considerable level. As a policy implication, drafting strict environmental regulations and utilizing renewable energy technologies will help mitigate carbon emissions for all West African countries.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-07849-7DOI Listing

Publication Analysis

Top Keywords

carbon emissions
28
west africa
16
emissions
9
carbon
9
emission levels
8
emissions economic
8
economic growth
8
spatial dependence
8
countries west
8
mitigation pathways
8

Similar Publications

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Spatial variation of land use carbon budget and zoning for carbon compensation in the Huai River Eco-economic Belt, China.

Sci Rep

January 2025

Key Research Base of Philosophy and Social Sciences in Jiangsu Universities, Research Institute of Huai River Eco-economic Belt, Huaiyin Normal University, Huaian, 223300, China.

Carrying out carbon budget assessment and carbon compensation zoning research from inter-regional perspective can actively boost the formulation of green, low-carbon transformation strategies, guiding the flow of compensation credits, promoting regional equity and sustainable development, and realizing China's "dual-carbon" goal. Huai River Eco-economic Belt is considered to be a typical example of how land use affects carbon budget due to its more drastic land changes. The paper uses the carbon emission coefficient method to analyze the carbon revenue and expenditure of kinds of land-use patterns, and constructs the carbon compensation model with the help of the carbon budget concentration index and the dominant comparative advantage index, and puts forward the carbon compensation zoning program.

View Article and Find Full Text PDF

Tailored large-particle quantum dots with high color purity and excellent electroluminescent efficiency.

Sci Bull (Beijing)

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:

High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!