Study's objective was to evaluate spatial variability of herbaceous cover species community in vineyards cultivated in soil with increasing Cu levels in Pampa biome. Three vineyards, with increasing soil Cu available contents and a natural field area (NF), were selected. In each experimental area, soil Cu content, botanical composition, cumulative aerial biomass, and aerial part Cu concentration, in most frequent species, were evaluated. In total, 39 vascular plant species were identified, including four exotic species. Biodiversity indicators did not significantly correlate with soil Cu. However, botanical composition variation could be observed. In NF, Poaceae and Asteraceae families presented greater dry mass contribution, while this contribution decreased in higher soil Cu concentration areas. The Cu concentration and accumulation in plant aerial part were higher in older vineyards, as plant aerial part accumulated, in average, 13.8 mg Cu m. Among species found in experimental fields, Ageratum conyzoides, a species known to form Cu-tolerant populations, occurred in most areas, especially in vineyards, presenting higher aerial Cu concentrations, with a mean of 126.47 mg kg. Soil enrichment with Cu did not alter the vegetation's biodiversity, but may have contributed to the botanical composition modification. The native species, P. plicatulum and A. conyzoides, presented a high bio-accumulation factor and are potential candidates for phytoremediation techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-07851-z | DOI Listing |
Plant Physiol
January 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P R China.
Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear.
View Article and Find Full Text PDFEnviron Res
January 2025
Humboldt-Universität zu Berlin, Institute of Biology, Ecology, 10115, Berlin, Germany.
Microbial communities, which are crucial for ecosystem function and sustainability, are under environmental pressure. Using phospholipid fatty acids (PLFAs) as a measure of microbial biomass and community structure, the responses of microorganisms to environmental drivers were studied in bank soil and sediment alongside the Yangtze River in China. Thirty-eight sites were investigated over a length of 5500 kilometers, ranging from the plateau to the estuary.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
Background: Red raspberry (Rubus idaeus L.) is a renowned fruit plant with significant medicinal value. Its nuclear genome and chloroplast genome (plastome) have been reported, while there is a lack of genetic information on its mitogenome.
View Article and Find Full Text PDFProtoplasma
January 2025
Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia.
Previously, it was found that four types of glandular trichomes (GTs) are developed on the surface of all aerial organs in Doronicum species. A detailed study of leaves had shown that only two types of GTs form in them. Nothing was known about any differences of GTs on vegetative and reproductive organs.
View Article and Find Full Text PDFFood Funct
January 2025
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403, China.
is a valuable edible fungus with multidimensional bioactivities; however, research on protein and its beneficial effects on nonalcoholic fatty liver disease (NAFLD) have been limited. In this study, protein (MEP) with 80.59% protein content was prepared, isolated, and characterized by the complete amino acid composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!