Glioblastoma (GBM) is the most common type of primary central nervous system tumor in adults, which has high mortality and morbidity rates, and short survival time, namely <15 months after the diagnosis and application of standard therapy, which includes surgery, radiation therapy and chemotherapy; thus, novel therapeutic strategies are imperative. The activation of the PI3K/AKT signaling pathway plays an important role in GBM. In the present study, U87 and U251 GBM cells were treated with the PI3K/mTORC1/2 inhibitor PQR309, and its effect on glioma cells was investigated. Cell Counting Kit‑8 assay, 5‑ethynyl‑2'‑deoxyuridine and colony formation assays revealed dose‑ and time‑dependent cytotoxicity in glioma cells that were treated with PQR309. Flow cytometry and western blotting revealed that PQR309 can significantly induce tumor cell apoptosis and arrest the cell cycle in the G1 phase. Furthermore, the expression levels of AKT, phosphorylated (p)‑AKT, Bcl‑2, Bcl‑xL, Bad, Bax, cyclin D1, cleaved caspase‑3, MMP‑9 and MMP‑2 were altered. In addition, the migration and invasion of glioma cells, as detected by wound healing, migration and Transwell invasion assays, exhibited a marked suppression after treating the cells with PQR309. These results indicated that PQR309 exerts an antitumor effect by inhibiting proliferation, inducing apoptosis, inducing G1 cell cycle arrest, and inhibiting invasion and migration in human glioma cells. The present study provides evidence supportive of further development of PQR309 for adjuvant therapy of GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040887 | PMC |
http://dx.doi.org/10.3892/or.2020.7472 | DOI Listing |
Antiviral Res
November 2024
Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark. Electronic address:
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global pandemic of Coronavirus Disease (2019) (COVID-19), underscoring the urgency for effective antiviral drugs. Despite the development of different vaccination strategies, the search for specific antiviral compounds remains crucial. Here, we combine machine learning (ML) techniques with in vitro validation to efficiently identify potential antiviral compounds.
View Article and Find Full Text PDFJ Clin Pharmacol
September 2024
Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
Cancer remains a significant global health challenge, and despite remarkable advancements in therapeutic strategies, poor tolerability of drugs (causing dose reduction/interruptions) and/or the emergence of drug resistance are major obstacles to successful treatment outcomes. Metastatic renal cell carcinoma (mRCC) accounts for 2% of global cancer diagnoses and deaths. Despite the initial success of targeted therapies in mRCC, challenges remain to overcome drug resistance that limits the long-term efficacy of these treatments.
View Article and Find Full Text PDFClin Cancer Res
September 2021
Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland.
Oncol Rep
March 2020
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.
Glioblastoma (GBM) is the most common type of primary central nervous system tumor in adults, which has high mortality and morbidity rates, and short survival time, namely <15 months after the diagnosis and application of standard therapy, which includes surgery, radiation therapy and chemotherapy; thus, novel therapeutic strategies are imperative. The activation of the PI3K/AKT signaling pathway plays an important role in GBM. In the present study, U87 and U251 GBM cells were treated with the PI3K/mTORC1/2 inhibitor PQR309, and its effect on glioma cells was investigated.
View Article and Find Full Text PDFNeuropharmacology
January 2020
Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany. Electronic address:
Dysregulation of the PI3K/Akt/mTOR pathway has been implicated in several brain disorders, including epilepsy. Rapamycin and similar compounds inhibit mTOR. complex 1 and have been reported to decrease seizures, delay seizure development, or prevent epileptogenesis in different animal models of genetic or acquired epilepsies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!