i-Rheo: determining the linear viscoelastic moduli of colloidal dispersions from step-stress measurements.

Phys Chem Chem Phys

División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150 León, Mexico.

Published: February 2020

We report on the application of a Fourier transform-based method, 'i-Rheo', to evaluate the linear viscoelastic moduli of hard-sphere colloidal dispersions, both in the fluid and glass states, from a direct analysis of raw step-stress (creep) experimental data. We corroborate the efficacy of i-Rheo by comparing the outputs of creep tests performed on homogenous complex fluids to conventional dynamic frequency sweeps. A similar approach is adopted for a number of colloidal suspensions over a broad range of volume fractions. For these systems, we test the limits of the method by varying the applied stress across the materials' linear and non-linear viscoelastic regimes, and we show that the best results are achieved for stress values close to the upper limit of the materials' linear viscoelastic regime, where the signal-to-noise ratio is at its highest and the non-linear phenomena have not appeared yet. We record that, the range of accessible frequencies is controlled at the higher end by the relative weight between the inertia of the instrument and the elasticity of the complex material under investigation; whereas, the lowest accessible frequency is dictated by the extent of the materials' linear viscoelastic regime. Nonetheless, despite these constrains, we confirm the effectiveness of i-Rheo for gaining valuable information on the materials' linear viscoelastic properties even from 'creep ringing' data, confirming its potency and general validity as an accurate method for determining the material's rheological behaviour for a variety of complex systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp06191fDOI Listing

Publication Analysis

Top Keywords

linear viscoelastic
20
materials' linear
16
viscoelastic moduli
8
colloidal dispersions
8
viscoelastic regime
8
linear
6
viscoelastic
6
i-rheo determining
4
determining linear
4
moduli colloidal
4

Similar Publications

Evaluation of fatigue performance of asphalt materials based on their relaxation behavior.

Sci Rep

January 2025

Shanxi Province Land Engineering Construction Group Co., Ltd, Xian, 710075, China.

Although the fatigue properties of asphalt materials have been extensively studied, the relationship between the rheological properties and road performance of asphalt mixtures remains underexplored. In this study, we have examined the relaxation properties of asphalt binders through relaxation tests conducted on asphalt and its mastic under different conditions. A repeated stress relaxation-recovery test is designed for assessing both the relaxation and elastic properties, and a set of reasonable test parameters is recommended, thereby establishing a novel test method for measuring the relaxation and elastic behaviors of asphalt.

View Article and Find Full Text PDF

Wound dressing development is an area of active research. Traditional dressings lack antibacterial activity, biocompatibility, and tissue regeneration. Alginate is a heavily investigated polymer employed as wound dressings and can be combined with a wide range of additives.

View Article and Find Full Text PDF

The rising demand for energy storage calls for technological advancements to address the growing needs. In this context, sodium-ion (Na-ion) batteries have emerged as a potential complementary technology to lithium-ion batteries (Li-ion). Among other materials, NaV(PO)F (NVPF) is a promising cathode for Na-ion batteries due to its high operating voltage and good energy density.

View Article and Find Full Text PDF

Flexible high-deflection strain gauges have been demonstrated to be cost-effective and accessible sensors for capturing human biomechanical deformations. However, the interpretation of these sensors is notably more complex compared to conventional strain gauges, particularly during dynamic motion. In addition to the non-linear viscoelastic behavior of the strain gauge material itself, the dynamic response of the sensors is even more difficult to capture due to spikes in the resistance during strain path changes.

View Article and Find Full Text PDF

The molecular characteristics and rheological properties of three UHMWPE samples were investigated. The high-temperature GPC method was used for characterizing UHMWPE samples used. The interpretation of the measurement results was based on calibration using the PS standard and the approximation of the PS data by linear and cubic polynomials, as well as on the data for linear PE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!