The underlying genetic changes that regulate the appearance and disappearance of repeated traits, or serial homologs, remain poorly understood. One hypothesis is that variation in genomic regions flanking master regulatory genes, also known as input-output genes, controls variation in trait number, making the locus of evolution almost predictable. Another hypothesis implicates genetic variation in up- or downstream loci of master control genes. Here, we use the butterfly , a species that exhibits natural variation in eyespot number on the dorsal hindwing, to test these two hypotheses. We first estimated the heritability of dorsal hindwing eyespot number by breeding multiple butterfly families differing in eyespot number and regressing eyespot numbers of offspring on midparent values. We then estimated the number and identity of independent genetic loci contributing to eyespot number variation by performing a genome-wide association study with restriction site-associated DNA sequencing from multiple individuals varying in number of eyespots sampled across a freely breeding laboratory population. We found that dorsal hindwing eyespot number has a moderately high heritability of ∼0.50 and is characterized by a polygenic architecture. Previously identified genomic regions involved in eyespot development, and novel ones, display high association with dorsal hindwing eyespot number, suggesting that homolog number variation is likely determined by regulatory changes at multiple loci that build the trait, and not by variation at single master regulators or input-output genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153931 | PMC |
http://dx.doi.org/10.1534/genetics.120.303059 | DOI Listing |
Insect Biochem Mol Biol
January 2025
College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China. Electronic address:
Elife
December 2024
Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia.
Eyespot patterns have evolved in many prey species. These patterns were traditionally explained by the eye mimicry hypothesis, which proposes that eyespots resembling vertebrate eyes function as predator avoidance. However, it is possible that eyespots do not mimic eyes: according to the conspicuousness hypothesis, eyespots are just one form of vivid signals where only conspicuousness matters.
View Article and Find Full Text PDFSampling in shallow sediments of Bay of Biscay up to 70 m has yielded three undescribed capitellids. Mediomastus biscayensis sp. nov.
View Article and Find Full Text PDFTwo new species of marine flatworms, Paraplanocera kalpeniensis sp. nov. and Pseudoceros bifascia sp.
View Article and Find Full Text PDFInvertebr Syst
October 2024
Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy.
Mesopsammic polyclad members in the family Boniniidae have attracted attention in terms of their evolutionary shifts of microhabitat and their unique morphology such as a pair of pointed tentacles extending from the anterolateral margins and prostatoid organs harbouring stylets. Here, we establish a new species of this family as Boninia panamensis sp. nov.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!