Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bio-refinery approach using agricultural and industrial waste material as feedstock is becoming a preferred area of interest in biotechnology in the current decades. The reasons for this trend are mainly because of the declining petroleum resources, greenhouse gas emission risks and fluctuating market price of crude oil. Most chemicals synthesized petro chemically, can be produced using microbial biocatalysts. 2,3-Butanediol (BDO) is such an important platform bulk chemical with numerous industrial applications including as a fuel additive. Although microbial production of BDO is well studied, strategies that could successfully upgrade the current lab-scale researches to an industrial level have to be developed. This review presents an overview of the recent trends and developments in the microbial production of BDO from different lignocellulose biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.122873 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!