Background: Grapevine is an economically important crop for which yield and berry quality is strongly affected by climate change. Large variations in drought tolerance exist across Vitis species. Some of these species are used as rootstock to enhance abiotic and biotic stress tolerance. In this study, we investigated the physiological and transcriptomic responses to water deficit of four different genotypes that differ in drought tolerance: Ramsey (Vitis champinii), Riparia Gloire (Vitis riparia), Cabernet Sauvignon (Vitis vinifera), and SC2 (Vitis vinifera x Vitis girdiana).

Results: Ramsey was particularly more drought tolerant than the other three genotypes. Ramsey maintained a higher stomatal conductance and photosynthesis at equivalent levels of moderate water deficit. We identified specific and common transcriptomic responses shared among the four different Vitis species using RNA sequencing analysis. A weighted gene co-expression analysis identified a water deficit core gene set with the ABA biosynthesis and signaling genes, NCED3, RD29B and ABI1 as potential hub genes. The transcript abundance of many abscisic acid metabolism and signaling genes was strongly increased by water deficit along with genes associated with lipid metabolism, galactinol synthases and MIP family proteins. This response occurred at smaller water deficits in Ramsey and with higher transcript abundance than the other genotypes. A number of aquaporin genes displayed differential and unique responses to water deficit in Ramsey leaves. Genes involved in cysteine biosynthesis and metabolism were constitutively higher in the roots of Ramsey; thus, linking the gene expression of a known factor that influences ABA biosynthesis to this genotype's increased NCED3 transcript abundance.

Conclusion: The drought tolerant Ramsey maintained higher photosynthesis at equivalent water deficit than the three other grapevine genotypes. Ramsey was more responsive to water deficit; its transcriptome responded at smaller water deficits, whereas the other genotypes did not respond until more severe water deficits were reached. There was a common core gene network responding to water deficit for all genotypes that included ABA metabolism and signaling. The gene clusters and sub-networks identified in this work represent interesting gene lists to explore and to better understand drought tolerance molecular mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001288PMC
http://dx.doi.org/10.1186/s12870-019-2012-7DOI Listing

Publication Analysis

Top Keywords

water deficit
32
drought tolerance
16
water deficits
12
water
11
ramsey
9
vitis
8
vitis champinii
8
higher photosynthesis
8
abscisic acid
8
biosynthesis signaling
8

Similar Publications

Drought and heat stress significantly limit crop growth and productivity. Their simultaneous occurrence, as often observed in summer crops, leads to larger yield losses. Sorghum is well adapted to dry and hot conditions.

View Article and Find Full Text PDF

Dual controls of vapour pressure deficit and soil moisture on photosynthesis in a restored temperate bog.

Sci Total Environ

January 2025

Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise Street. 46, 51003 Tartu, Estonia. Electronic address:

Despite only covering ~3 % of the land mass, peatlands store more carbon (C) per unit area than any other ecosystem. This is due to the discrepancy between C fixed by the plants (Gross primary productivity (GPP)) and decomposition. However, this C is vulnerable to frequent, severe droughts and changes in the peatland microclimate.

View Article and Find Full Text PDF

Background: Diabetes is known to cause cognitive impairments and synaptic dysfunction. This study investigates the effects of (EO), (CT), Vitamin C, and metformin on cognitive function and synaptic density (SYN) in diabetic rats. This work aims to evaluate the impact of various treatments on spatial learning, memory, and SYN in a diabetic rat model.

View Article and Find Full Text PDF

Construing the resilience to osmotic stress using endophytic fungus in maize (Zea mays L.).

Plant Mol Biol

January 2025

Department of Plant Pathology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra (GKVK), Bengaluru, India.

In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments.

View Article and Find Full Text PDF

Soil moisture drought and diverse impacts on vegetation across the Tibetan Plateau in recent three decades.

Sci Total Environ

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China. Electronic address:

Climate warming is presumed to cause drought on the Tibetan Plateau (TP), posing severe threats to local vegetation and ecosystems. Currently, soil moisture (SM) drought and its effects on vegetation growth have been rarely reported, due to lacking observations and data uncertainties. Here we used ERA5-Land, ESA CCI, and GLDAS Noah SM to investigate the spatiotemporal patterns of summertime (May-September) SM drought and its impacts on vegetation over 1995-2018.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!