Photoacoustic (PA) imaging is a hybrid imaging technique that can provide both structural and functional information of biological tissues. Due to limited permissible laser energy deposited on tissues, highly sensitive PA imaging is required. Here, we developed a 20 MHz lead zirconium titanate (PZT) transducer (1.5 mm × 3 mm) with front-end amplifier circuits for local signal processing to achieve sensitivity enhanced PA imaging. The electrical and acoustic performance was characterized. Experiments on phantoms and chicken breast tissue were conducted to validate the imaging performance. The fabricated prototype shows a bandwidth of 63% and achieves a noise equivalent pressure (NEP) of 0.24 mPa/√Hz and a receiving sensitivity of 62.1 μV/Pa at 20 MHz without degradation of the bandwidth. PA imaging of wire phantoms demonstrates that the prototype is capable of improving the detection sensitivity by 10 dB compared with the traditional transducer without integrated amplifier. In addition, in vitro experiments on chicken breast tissue show that structures could be imaged with enhanced contrast using the prototype and the imaging depth range was improved by 1 mm. These results demonstrate that the transducer with an integrated front-end amplifier enables highly sensitive PA imaging with improved penetration depth. The proposed method holds the potential for visualization of deep tissue structures and enhanced detection of weak physiological changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038444 | PMC |
http://dx.doi.org/10.3390/s20030766 | DOI Listing |
Ultrasonics
January 2025
Department of Civil Engineering and Architecture, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia. Electronic address:
Pipe bends are recognized as critical areas susceptible to wall thinning, a phenomenon instigated by abrupt changes in the fluid flow direction and velocity. Conventional monitoring techniques for bends typically depend on localized ultrasonic measurements of thickness. While these methods are effective, they can be time-consuming compared to the use of permanently installed transducers, a strategy employed in guided wave tomography (GWT).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai, 200050, China.
Chemo-sensor designing involves a time-consuming trial-and-error screening process, which commonly cannot lead to optimal SR features (Sensitivity, Selectivity, Speed, Stability, and Reversibility). Due to strong path dependence on reported groups/mechanisms, conventional chemo-sensors often fail to meet critical application demands, especially in achieving high reversibility without compromising other features. Here, a three-step screen and design strategy is developed for gaining customized chemo-sensors, through Structure modeling; MEMS (Micro Electro Mechanical Systems) analysis, and Performance verification.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangdong University of Technology, Guangzhou, 510006, China.
Common-signal-induced synchronization of semiconductor lasers have promising applications in physical-layer secure transmission with high speed and compatibility with the current fiber communication. Here, we propose an ultra-long-distance laser synchronization scheme by utilizing random digital optical communication signal as the common drive signal. By utilizing the long-haul optical coherent communication techniques, high-fidelity fiber transmission of the digital drive can be achieved and thus ultra-long-distance synchronization is expected.
View Article and Find Full Text PDFNat Commun
January 2025
Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA.
Exiting a germinal zone (GZ) initiates a cascade of events that promote neuronal maturation and circuit assembly. Developing neurons and their progenitors must interpret various niche signals-such as morphogens, guidance molecules, extracellular matrix components, and adhesive cues-to navigate this region. How differentiating neurons in mouse brains integrate and adapt to multiple cell-extrinsic niche cues with their cell-intrinsic machinery in exiting a GZ is unknown.
View Article and Find Full Text PDFSci Adv
January 2025
Neural Engineering Centre, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Neuromuscular abnormality is the leading cause of disability in adults. Understanding the complex interplay between muscle structure and function is crucial for effective treatment and rehabilitation. However, the substantial deformation of muscles during movement (up to 40%) poses challenges for accurate assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!