ADAM12 is A Potential Therapeutic Target Regulated by Hypomethylation in Triple-Negative Breast Cancer.

Int J Mol Sci

Molecular Pathology of Cancer Group, Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain.

Published: January 2020

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and currently lacks any effective targeted therapy. Since epigenetic alterations are a common event in TNBC, DNA methylation profiling can be useful for identifying potential biomarkers and therapeutic targets. Here, genome-wide DNA methylation from eight TNBC and six non-neoplastic tissues was analysed using Illumina Human Methylation 450K BeadChip. Results were validated by pyrosequencing in an independent cohort of 50 TNBC and 24 non-neoplastic samples, where protein expression was also assessed by immunohistochemistry. The functional role of disintegrin and metalloproteinase domain-containing protein 12() in TNBC cell proliferation, migration and drug response was analysed by gene expression silencing with short hairpin RNA. Three genes (Von Willenbrand factor C and Epidermal Growth Factor domain-containing protein , tetraspanin-9 () and ) were found to be exclusively hypomethylated in TNBC. Furthermore, hypomethylation was associated with a worse outcome in TNBC tissues and was also found in adjacent-to-tumour tissue and, preliminarily, in plasma from TNBC patients. In addition, silencing decreased TNBC cell proliferation and migration and improved doxorubicin sensitivity in TNBC cells. Our results indicate that ADAM12 is a potential therapeutic target and its hypomethylation could be a poor outcome biomarker in TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036924PMC
http://dx.doi.org/10.3390/ijms21030903DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
tnbc
11
adam12 potential
8
potential therapeutic
8
therapeutic target
8
triple-negative breast
8
dna methylation
8
tnbc non-neoplastic
8
domain-containing protein
8
tnbc cell
8

Similar Publications

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes among estrogen-receptor positive (ER+) patients.

View Article and Find Full Text PDF

TRAIL agonists rescue mice from radiation-induced lung, skin or esophageal injury.

J Clin Invest

January 2025

Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.

Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.

View Article and Find Full Text PDF

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

Clinical utility of tumor-infiltrating lymphocyte evaluation by two different methods in breast cancer patients treated with neoadjuvant chemotherapy.

Breast Cancer

January 2025

Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.

Purpose: The aim of this study was to examine the clinical utility of tumor-infiltrating lymphocytes (TILs) evaluated by "average" and "hot-spot" methods in breast cancer patients.

Methods: We examined 367 breast cancer patients without neoadjuvant chemotherapy (NAC) by average and hot-spot methods to determine the consistency of TIL scores between biopsy and surgical specimens. TIL scores before NAC were also compared with the pathological complete response (pCR) rate and clinical outcomes in 144 breast cancer patients that received NAC.

View Article and Find Full Text PDF

Exosome markers, CD63 and CD81, belong to the tetraspanin family and are expressed in solid tumors. It has been reported that these tetraspanin family members are prognostic factors in some cancers. However, the expression of CD63 and CD81 in pathological breast cancer specimens has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!