, a causative agent of persistent diarrhea in humans, domestic animals, and cattle, is usually treated with nitro compounds. Consequently, enzymes involved in anaerobic nitro reduction have been investigated in detail as potential targets. Their role within the normal metabolic context is, however, not understood. Using H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, we analyzed the metabolomes of trophozoites overexpressing three nitroreductases (NR1-NR3) and thioredoxin reductase (TrxR), most likely a scavenger of reactive oxygen species, as suggested by the results published in this study. We compared the patterns to convenient controls and to the situation in the nitro drug resistant strain C4 where NR1 is downregulated. We identified 27 metabolites in trophozoites. Excluding metabolites of high variability among different wildtype populations, only trophozoites overexpressing NR1 presented a distinct pattern of nine metabolites, in particular arginine catabolites, differing from the respective controls. This pattern matched a differential pattern between wildtype and strain C4. This suggests that NR1 interferes with arginine and thus energy metabolism. The exact metabolic function of NR1 (and the other nitroreductases) remains to be elucidated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073884 | PMC |
http://dx.doi.org/10.3390/metabo10020053 | DOI Listing |
Methods Mol Biol
January 2025
NMR Laboratory, Chemistry Department, University of Crete, Heraklion, Crete, Greece.
High Resolution-Magic Angle Spinning (HR-MAS) solid-state NMR spectroscopy is finding increasing application in the analysis of solid foods, bypassing the need for complicated solvent extraction procedures. In the present protocol, we report a simple analytical approach based on HR-MAS NMR spectroscopy for the phenolic profiling of olive fruits, flesh, or skin. This approach allows the facile characterization of phenolic compounds in olive fruits cultivated for extra-virgin olive oil production as a function of maturation and variety, in addition to processing technology for table olives.
View Article and Find Full Text PDFSkelet Muscle
December 2024
Department of Physiology and Aging, University of Florida, Gainesville, FL, USA.
Despite its notoriously mild phenotype, the dystrophin-deficient mdx mouse is the most common model of Duchenne muscular dystrophy (DMD). By mimicking a human DMD-associated metabolic comorbidity, hyperlipidemia, in mdx mice by inactivating the apolipoprotein E gene (mdx-ApoE) we previously reported severe myofiber damage exacerbation via histology with large fibro-fatty infiltrates and phenotype humanization with ambulation dysfunction when fed a cholesterol- and triglyceride-rich Western diet (mdx-ApoE). Herein, we performed comparative lipidomic and metabolomic analyses of muscle, liver and serum samples from mdx and mdx-ApoE mice using solution and high-resolution-magic angle spinning (HR-MAS) H-NMR spectroscopy.
View Article and Find Full Text PDFCarbohydr Polym
February 2025
Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, MI, Italy. Electronic address:
Int J Mol Sci
October 2024
Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland.
In this work, the HR MAS NMR (high-resolution magic-angle spinning nuclear magnetic resonance) spectroscopy technique was combined with standard histological examinations to investigate the metabolic features of high-grade serous ovarian cancer (HGSOC) with a special focus on the relation between a metabolic profile and a cancer cell fraction. The studied group consisted of 44 patients with HGSOC and 18 patients with benign ovarian tumors. Normal ovarian tissue was also excised from 13 control patients.
View Article and Find Full Text PDFMicroorganisms
August 2024
Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
The diversity of O-polysaccharides (O-antigens) among 28 strains isolated from ill fish has been determined by using high-resolution magic angle spinning (HR MAS) NMR spectroscopy. The new O-polysaccharide has been identified in two isolates. This new structure was investigated by H and C NMR spectroscopy and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!