Simultaneous manganese adsorption and biotransformation by Streptomyces violarus strain SBP1 cell-immobilized biochar.

Sci Total Environ

Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand. Electronic address:

Published: April 2020

Consumption of water containing high proportions of manganese could cause Parkinson's like symptoms and damage the central nervous systems. This study aims to investigate the potential of manganese removal through the development of microbial cell-immobilized biochar. The wood vinegar industry generates a large volume of carbonized wood waste (natural biochar) from the pyrolytic process. This is the first investigation utilizing this low value waste combined with biological treatment for water purification. Raw and hydrogen peroxide-modified biochars were used to immobilize an effective manganese-oxidizing bacterium, Streptomyces violarus strain SBP1 (SBP1). The results demonstrated that the modified biochar had a higher proportion of oxygen-containing functional groups leading to better manganese removal. Manganese adsorption by the modified biochar fitted pseudo-second-order and Langmuir models with the maximum adsorption capacity of 1.15 mg g. The modified biochar with SBP1 provided the highest removal efficiency at 78%. The advanced synchrotron analyses demonstrated that manganese removal by the biochar with SBP1 is due to the synergistic combination of manganese adsorption by biochars and biological oxidation by SBP1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.136708DOI Listing

Publication Analysis

Top Keywords

manganese adsorption
12
manganese removal
12
modified biochar
12
streptomyces violarus
8
violarus strain
8
strain sbp1
8
cell-immobilized biochar
8
biochar sbp1
8
biochar
7
sbp1
6

Similar Publications

Multi-effect synergistic induction of unsaturated MnO on sandy sediment for enhanced manganese adsorption and byproduct resource recovery in solar evaporation.

J Hazard Mater

January 2025

School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, PR China. Electronic address:

The efficient removal of Mn(II) from wastewater is crucial for safeguarding water quality, yet existing adsorbents face significant challenges, including high costs, poor resistance to ionic interference, and scalability limitations. This study addresses these challenges by utilizing abundant natural sandy sediment (SS) as a substrate to load unsaturated MnO via in-situ oxidation, creating a novel adsorbent (MOSS). MOSS exhibits a remarkable Mn(II) adsorption capacity of 1.

View Article and Find Full Text PDF

Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.

View Article and Find Full Text PDF

Inorganic arsenic (As) is one of the most significant chemical contaminants in drinking water worldwide. Although membrane-based technologies are commonly used for As removal, they often encounter challenges including complex operation, high energy consumption, and the need for chemical addition. To address these challenges, we proposed a one-step ultrafiltration (UF) process empowered by in situ biogenic manganese oxides (BioMnO) cake layers without any additional chemicals, to treat source water contaminated with both As and manganese (Mn).

View Article and Find Full Text PDF

Enhanced catalytic transfer hydrogenation of p-nitrophenol using formaldehyde: MnO-supported Ag nanohybrids with tuned d-band structure.

J Colloid Interface Sci

January 2025

Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

Article Synopsis
  • The catalytic reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) is essential in the pharmaceutical and agrochemical sectors, with sustainable methods being a priority.
  • Using manganese dioxide (MnO) supported silver (Ag) nanoparticles (NPs) as a catalyst for the catalytic transfer hydrogenation (CTH) of 4-NP with formaldehyde (HCHO) provides a safer and more efficient alternative due to lower toxicity and easy handling.
  • The study shows that electron transfer from Ag to MnO enhances HCHO activation, resulting in a more effective CTH process, with the optimized 15% Ag/MnO catalyst achieving a significant turnover frequency of 3.83
View Article and Find Full Text PDF

Sustained Tl(I) removal by α-MnO: Dual role of tunnel structure incorporation and surface catalytic oxidation.

J Hazard Mater

January 2025

Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.

Article Synopsis
  • Manganese oxide-based filtration is an effective, cost-efficient method for removing thallium from engineered systems, although there are gaps in understanding its long-term effectiveness.
  • α-MnO demonstrated a high potential for thallium removal, showing a significant increase in irreversible removal rates (81%-95%) over a 584-hour period under various conditions.
  • The study reveals critical mechanisms, such as the oxidation of thallium, driven by surface Mn(III)-O interactions, highlighting how different environmental factors influence thallium binding and removal effectiveness in manganese oxide systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!