The objective of this study was to investigate the color removal in a binary mixture of azo dyes from the photovoltaic electrocoagulation (EC) technique, using spectral deconvolution and the Gaussian fit for qualitative and quantitative determination of the physical color parameter. Initially, a conventional energy source was used to feed the EC reactor and the experimental design was conducted according to the Rotational Central Compound Design (RCCD). The spectral deconvolution method associated to the Gaussian fit aided in the description of the composition of the sample matrix, In the first step, through the Analysis of Variance, the RCCD and the three-dimensional surface response graphs, the optimized operating conditions were identified, which corresponded to 1320 A m with an reaction time of 16.6 min, and an expected removal of 98.40% for Scarlet Red (SR) dye and 1160 A m with a run time of 15.7 min and 97.9% removal for Turquoise Blue (TB) dye. Using the photovoltaic module as the power source of the EC reactor, a maximum removal of 97 ± 0.43% for TB dye and 98% ± 0.81 for SR was obtained. The results encourage the applicability of photovoltaic module-fed EC technology as a promising alternative for the treatment of effluents containing textile dyes, as well as the use of the spectral deconvolution method associated with the Gaussian fit, for the reliability and precision of the results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.136301DOI Listing

Publication Analysis

Top Keywords

spectral deconvolution
16
gaussian fit
16
associated gaussian
12
photovoltaic electrocoagulation
8
textile dyes
8
deconvolution method
8
method associated
8
spectral
4
deconvolution associated
4
gaussian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!