Understanding the mechanisms of pollen release and dispersion in the atmosphere is of high importance, not only for getting an insight on the patterns of movement of these biological particles that are necessary for plants' reproduction, but also because exposure to airborne pollen is a major concern for respiratory allergies worldwide. In this work, a synoptic circulation-to-environment classification method was adopted to elucidate the relationship between distinct atmospheric patterns and pollen levels for the 11 most abundant but also allergenic taxa in Thessaloniki, Greece, for the 15-year period 1987-2001. It was found that the NW1 depressional weather type is associated with the "low winter pollen season" and high levels of pollen from Carpinus spp., Corylus spp., Cupressaceae, Platanus spp., Pinaceae, Quercus spp. and Urticaceae. In contrast, the SW1 cyclonic type is linked to the "high spring-summer pollen season" and high levels of pollen from Oleaceae and Urticaceae. On the other hand, anticyclonic weather is associated with the "summer-autumn pollen season" and high levels of Poaceae and Chenopodiaceae pollen in the atmosphere. Regional transport of Alnus pollen is linked to a strong high-pressure system centered over Italy, giving light NE winds over northern Greece. These findings shed light to the synoptic climatology of airborne pollen in Thessaloniki and could feed early-warning systems for alerting vulnerable groups of the allergic population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.136625 | DOI Listing |
Plant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey.
Propolis, a natural product with remarkable therapeutic potential, has gained attention for its antimicrobial, antioxidant, and anti-inflammatory properties. In this study, propolis samples from Sarıyaprak, Kovanağzı, and Çemikari in Pervari, Siirt province, were analysed comprehensively. The evaluation included wax composition, DPPH and FRAP assays, total phenolic and flavonoid content, and pollen analysis.
View Article and Find Full Text PDFNew Phytol
January 2025
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
Immobility of flowering plants requires them to engage pollen vectors to outcross, introducing considerable inefficiency in the conversion of pollen production into sired seeds. Whether inefficiencies influence the evolution of the relative resource allocation to female and male functions has been debated for more than 40 years. Whereas early models suggested no effect, negative interspecific relations of mean pollen production and pollen : ovule ratios to the proportion of removed pollen that is exported to stigmas (pollen-transfer efficiency) indicate otherwise.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
Pollinators help maintain functional landscapes and are sensitive to floral nutritional quality. Both proteins and lipids influence pollinator foraging, but the role of individual biochemical components in pollen remains unclear. We conducted an experiment comprising common garden plots of six plant species (Asteraceae, Rosaceae, Onagraceae, Boraginaceae, and Plantaginaceae).
View Article and Find Full Text PDFAoB Plants
January 2025
Department of Biology, Loyola University Chicago 1032 W. Sheridan Rd. Chicago, IL 60660, United States.
The shift from outcrossing to predominantly selfing is one of the most common transitions in plant evolution. This evolutionary shift has received considerable attention from biologists; however, this work has almost exclusively been focused on animal-pollinated systems. Despite the seminal ecological and economic importance of wind-pollinated species, the mechanisms controlling the degree of outcrossing in wind-pollinated taxa remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!