The role of oligopeptides in preventing autism.

Med Hypotheses

Dept. of Obstetrics & Gynecology, Hadassah Hospital - Hebrew University, Ein Kerem, Jerusalem 12000, Israel.

Published: May 2020

Previous reports in this series point to insufficient insulin-like growth factor-1 (IGF1) in the newborn as the key to brain dysconnectivity characteristic of autism. Such a deficiency should be detectable in the baby's blood at or soon after birth. Breast-feeding exclusively for the first year of postpartum life or supplementation with oral agents to raise the serum IGF1 level, such a cyclo-glycylproline, could be helpful for this purpose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2020.109604DOI Listing

Publication Analysis

Top Keywords

role oligopeptides
4
oligopeptides preventing
4
preventing autism
4
autism previous
4
previous reports
4
reports series
4
series point
4
point insufficient
4
insufficient insulin-like
4
insulin-like growth
4

Similar Publications

ACE2 Inhibits Dermal Regeneration Through Ang II in Tissue Expansion.

J Cosmet Dermatol

January 2025

Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.

Background: Tissue expansion is a widely employed technique in reconstructive surgery aimed at addressing considerable skin defects. Nevertheless, matters like inadequate expansion capability and the potential for skin breakage due to the fragility of the expanded tissue present notable hurdles in enhancing skin regeneration during this process. Angiotensin-converting enzyme 2 (ACE2) is recognized for its essential role in facilitating tissue renewal and regeneration.

View Article and Find Full Text PDF

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

Oxidative stress (OS) injury is pivotal in acute pancreatitis (AP) pathogenesis, contributing to inflammatory cascades. Irisin, a ubiquitous cytokine, exhibits antioxidant properties. However, the role of irisin in AP remains inconclusive.

View Article and Find Full Text PDF

Inefficient endosomal escape has been regarded as the main bottleneck for intracellular nucleic acid delivery. While most research efforts have been spent on designing various nano-sized particles, we took a different path here, investigating micron-sized carriers for direct cytosol entry. Using the spontaneous co-assembly of mRNA and the designer 27 amino acid oligopeptide named pepMAX2, micron-sized co-assemblies were obtained with various sizes by altering the concentration of NaCl salt and time for pre-incubation.

View Article and Find Full Text PDF

FITA-Containing 2,4-Dinitrophenyl Alkylthioether-Based Probe for Detection and Imaging of GSH.

Sensors (Basel)

December 2024

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.

Glutathione (GSH) plays a crucial role in various physiological processes and its imbalances are closely related to various pathological conditions. Probes for detection and imaging of GSH are not only useful for understanding GSH chemical biology but are also important for exploring potential theranostic agents. Herein, we report a fast intramolecular thiol-activated arylselenoamides ()-based fluorescent probe using 2,4-dinitrophenyl alkylthioether as a sulfydryl-selective receptor for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!