Soil is a primary source of water and inorganic nutrients vital for plant growth. In particular, the rhizosphere, a microecological region around the plant roots, is enriched with root exudates that enable beneficial microbial communities to form. Plant growth-promoting rhizobacteria (PGPR) are rhizosphere bacteria that contribute to the improvement of plant growth through diverse physiological mechanisms. Identifying PGPR is beneficial for agriculture because their use can effectively increase the productivity of plants without the harmful side effects of chemical fertilizers. To further enrich the pool of PGPR that contribute to abiotic stress resistance in plants, we screened roughly 491 bacteria that had previously been isolated in soil from Gotjawal in Jeju island, South Korea. Among several candidates, the application of Bacillus subtilis strain GOT9, led to the enhancement of drought and salt stress tolerance in Arabidopsis. In agreement with the increased stress tolerance phenotypes, its application resulted in increases in the transcripts of various drought stress- and salt stress-inducible genes in the absence or presence of the stresses. Furthermore, the treatment resulted in improved lateral root growth and development in Arabidopsis. GOT9 also led to enhanced tolerance against drought and salt stresses and to upregulation of drought-inducible genes in Brassica, a closely related crop to Arabidopsis. Taken together, these results show that GOT9 could be utilized as a biotic resource that effectively minimizes damage to plants from environmental stresses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2020.01.032 | DOI Listing |
GM Crops Food
December 2025
College of Agronomy, Jilin Agricultural University, Changchun, China.
Maize ( L.) is a major food and feed crop and an important raw material for energy, chemicals, and livestock. The NF-Y family of transcription factors in maize plays a crucial role in the regulation of plant development and response to environmental stress.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
Background: Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp.
View Article and Find Full Text PDFMol Biotechnol
December 2024
Department of Biochemistry, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
Staphylococcus warneri is a gram-positive mesophilic bacterium, resilient to extreme environmental conditions. To unravel its Osmotic Tolerance Response (OTR), we conducted proteomic and metabolomic analyses under drought (PEG) and salt (NaCl) stresses. Our findings revealed 1340 differentially expressed proteins (DEPs) across all treatments.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
The present study has evaluated different soybean genotypes to understand the salt and drought tolerance mechanisms based on physiological traits (photosynthesis, stomatal conductance, chlorophyll, and cell membrane stability), antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), reactive oxygen species (HO and O ), osmolytes (glycine betaine, proline, and Na/K), plant water relations (relative water content, water potential, and solute potential) and expression of related genes (, , , , , , , and ). The experiment was conducted in a two-factorial arrangement using randomized complete block design (RCBD) with genotypes as one factor and salt, drought, and control treatments as the other factor. All physiological traits, relative water content, and water potential decreased significantly in all soybean genotypes due to individual and combined treatments of drought and salt stress, with significantly less decrease in soybean genotypes G4620RX, DM45X61, and NARC-21.
View Article and Find Full Text PDFJ Adv Res
December 2024
College of Forestry and Grassland Science, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China. Electronic address:
Background: Trehalose is a nonreducing disaccharide containing two glucose molecules linked through an α,α-1,1-glycosidic bond. This unique chemical structure causes trehalose levels to fluctuate significantly in plants under stress, where it functions as an osmoprotectant, enhancing plant resistance to stress. Previous studies have confirmed that the trehalose synthesis pathway is widely conserved across most plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!