DNA mixtures from 3 or more contributors have proven difficult to analyze using the current state-of-the-art method of short-tandem repeat (STR) amplification followed by capillary electrophoresis (CE). Here we analyze samples from both laboratory-defined mixtures and complex multi-contributor touch samples using a single nucleotide polymorphism (SNP) panel comprised of 2311 low-minor-allele-frequency loci, combined with massively parallel sequencing (MPS). This approach demonstrates that as many as 10 people can be identified in touch samples using a threshold of -Log P(RMNE) of 6, and a detection rate of 18-94 % across 10 different materials using a threshold of -Log P(RMNE) of 2. Thirty-two false positives were observed in 100 touch samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsigen.2020.102234DOI Listing

Publication Analysis

Top Keywords

touch samples
12
dna mixtures
8
massively parallel
8
parallel sequencing
8
threshold -log
8
-log prmne
8
analysis complex
4
complex dna
4
mixtures massively
4
sequencing snps
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!