Immune and gut bacterial successions of large yellow croaker (Larimichthys crocea) during Pseudomonas plecoglossicida infection.

Fish Shellfish Immunol

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China. Electronic address:

Published: April 2020

Large yellow croaker (Larimichthys crocea, LYC) aquaculture is being threatened by intensive infectious diseases. Relevant studies have focused on LYC immune responses to infection. By contrast, little is known how and to what extent the gut microbiota responds to infection. Here, we explored the interactions between LYC immune responses and gut bacterial communities during Pseudomonas plecoglossicida infection. P. plecoglossicida successfully colonized into LYC gut microbiota, resulting in an increasing mortality rate. Relative gene expressions of pro-inflammatory cytokines (TNF-α1, TNF-α2 and IL-1β) and anti-inflammatory cytokine (IL-10) were consistently and significantly induced by P. plecoglossicida infection, whereas non-specific immune enzymes activities were only enhanced at the early infection stages. P. plecoglossicida infection caused an irreversible disruption in the gut microbiota, of which infection and hours post infection constrained 16.2% and 5.6% variations, respectively. In addition, top 18 discriminatory taxa that were responsible for the difference between treatments were identified, whose abundances were significantly associated with the immune activities of LYC. Using a structural equation modeling (SEM), we found that gut bacterial communities were primarily governed by the conjointly direct (-0.33) and indirect (0) effects of infection, which subsequently affect host immune responses. Our results suggest that an irreversible dysbiosis in gut microbiota could be the causality of increasing mortality. To our knowledge, this is the first study to provide an integrated overview among pathogen infection, immune response and gut microbiota of LYC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2020.01.063DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
plecoglossicida infection
16
gut bacterial
12
immune responses
12
infection
11
large yellow
8
yellow croaker
8
croaker larimichthys
8
larimichthys crocea
8
pseudomonas plecoglossicida
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!