Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A silkworm cocoon contains several antimicrobial proteins such as protease inhibitors and seroins to provide protection for the enclosed pupa. In this study, we identified a new Bombyx mori phosphatidylethanolamine-binding protein (BmPEBP) with antimicrobial activity in the cocoon silk using semi-quantitative and quantitative RT-PCR, western blotting, and immunofluorescence. The results indicated that BmPEBP was synthesized in the middle silk gland and secreted into the sericin layer of the cocoon silk. Functional analysis showed that BmPEBP could inhibit the spore growth of four types of fungi, Candida albicans, Saccharomyces cerevisiae, Beauveriabassiana, and Aspergillus fumigates, by binding to the fungal cell membrane. Investigation of the interaction of BmPEBP with membrane phospholipids revealed that the protein showed a strong binding affinity to phosphatidylethanolamine, weak affinity to phosphatidylinositol, and no affinity to phosphatidylserine or phosphatidylcholine. Circular dichroism spectroscopy showed that binding to phosphatidylethanolamine caused conformational changes in the BmPEBP molecule by reducing β-sheet formation and inducing the appearance of an α-helix motif. We speculate that BmPEBP performs antifungal function in the cocoon silk through interaction with phosphatidylethanolamine in the fungal membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.01.310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!