Post-transcriptional mechanisms regulate the stability and, hence, expression of coding and noncoding RNAs. Sequence-specific features within the 3' untranslated region (3' UTR) often direct mRNAs for decay. Here, we characterize a genome-wide RNA decay pathway that reduces the half-lives of mRNAs based on overall 3' UTR structure formed by base pairing. The decay pathway is independent of specific single-stranded sequences, as regulation is maintained in both the original and reverse complement orientation. Regulation can be compromised by reducing the overall structure by fusing the 3' UTR with an unstructured sequence. Mutating base-paired RNA regions can also compromise this structure-mediated regulation, which can be restored by re-introducing base-paired structures of different sequences. The decay pathway requires the RNA-binding protein UPF1 and its associated protein G3BP1. Depletion of either protein increased steady-state levels of mRNAs with highly structured 3' UTRs as well as highly structured circular RNAs. This structure-dependent mechanism therefore enables cells to selectively regulate coding and noncoding RNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055448 | PMC |
http://dx.doi.org/10.1016/j.molcel.2020.01.021 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.
The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
Environmentally persistent free radicals (EPFRs) have been widely detected in polycyclic aromatic hydrocarbon (PAH)-contaminated soils, but the activation of persulfate by inherent EPFRs in PAH-contaminated soil for the transformation of PAHs remains unclear. In the present study, benzo[]pyrene (B[]P) was selected as a representative PAH and its transformation in a persulfate/B[]P-contaminated soil system was studied without the addition of any other activator. Results indicated that EPFRs in the soil activated persulfate to produce reactive oxygen species (ROS) and degraded B[]P.
View Article and Find Full Text PDFMater Adv
January 2025
Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, P. R. China.
Li-ion and Na-ion batteries are promising systems for powering electric vehicles and grid storage. Layered 3d transition metal oxides ATMO (A = Li, Na; TM = 3d transition metals; 0 < x ≤ 2) have drawn extensive attention as cathode materials due to their exceptional energy densities. However, they suffer from several technical challenges caused by crystal structure degradation associated with TM ions migration, such as poor cycling stability, inferior rate capability, significant voltage hysteresis, and serious voltage decay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!