Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There are growing demands to ensure animal health and, from a broader perspective, animal welfare, especially for farmed animals. In addition to the newly developed welfare assessment protocols, which provide a harmonised method to measure animal health during farm visits, the question has been raised whether data from existing data collections can be used for an assessment without a prior farm visit. Here, we explore the possibilities of developing animal health scores for fattening pig herds using a) official meat inspection results, b) data on antibiotic usage and c) data from the QS (QS Qualität und Sicherheit GmbH) Salmonella monitoring programme in Germany. The objective is to aggregate and combine these register-like data into animal health scores that allow the comparison and benchmark of participating pig farms according to their health status. As the data combined in the scores have different units of measure and are collected in different abattoirs with possibly varying recording practices, we chose a relative scoring approach using z-transformations of different entrance variables. The final results are aggregated scores in which indicators are combined and weighted based on expert opinion according to their biological significance for animal health. Six scores have been developed to describe different focus areas, such as "Respiratory Health", "External Injuries/ Alterations", "Animal Management", "Antibiotic Usage", "Salmonella Status" and "Mortality". These "focus" area scores are finally combined into an "Overall Score". To test the scoring method, existing routine data from 1,747 pig farm units in Germany are used; these farm units are members of the QS Qualität und Sicherheit GmbH (QS) quality system. In addition, the scores are directly validated for 38 farm units. For these farm units, the farmers and their veterinarians provided their perceptions concerning the actual health status and existing health problems. This process allowed a comparison of the scoring results with actual health information using kappa coefficients as a measure of similarity. The score testing of the focus area scores using real information resulted in normalised data. The results of the validation showed satisfactory agreement between the calculated scores for the project farm units and the actual health information provided by the related farmers and veterinarians. In conclusion, the developed scoring method could become a viable benchmark and risk assessment instrument for animal health on a larger scale under the conditions of the German system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999879 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228497 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!