Ocean warming and acidification are among the greatest threats to coral reefs. Massive coral bleaching events are becoming increasingly common and are predicted to be more severe and frequent in the near future, putting corals reefs in danger of ecological collapse. This study quantified the abundance, size, and survival of the coral Pocillopora acuta under future projections of ocean warming and acidification. Flow-through mesocosms were exposed to current and future projections of ocean warming and acidification in a factorial design for 22 months. Neither ocean warming or acidification, nor their combination, influenced the size or abundance of P. acuta recruits, but heating impacted subsequent health and survival of the recruits. During annual maximum temperatures, coral recruits in heated tanks experienced higher levels of bleaching and subsequent mortality. Results of this study indicate that P. acuta is able to recruit under projected levels of ocean warming and acidification but are susceptible to bleaching and mortality during the warmest months.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999881PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228168PLOS

Publication Analysis

Top Keywords

ocean warming
24
warming acidification
24
abundance size
8
size survival
8
survival recruits
8
coral pocillopora
8
pocillopora acuta
8
future projections
8
projections ocean
8
ocean
6

Similar Publications

Tropical Indian Ocean drives Hadley circulation change in a warming climate.

Natl Sci Rev

January 2025

Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China.

The weakening and poleward expansion of the Hadley circulation (HC) are considered robust responses of atmospheric meridional circulation to anthropogenic warming. Climate impacts arising from these changes enhance drought conditions and reduce food production in the affected regions. Therefore, understanding the mechanisms of HC changes is critical to anticipating the resultant climate risks.

View Article and Find Full Text PDF

Heat and drought events are increasing in frequency and intensity, posing significant risks to natural and agricultural ecosystems with uncertain effects on the net ecosystem CO exchange (NEE). The current Vegetation Photosynthesis and Respiration Model (VPRM) was adjusted to include soil moisture impacts on the gross ecosystem exchange (GEE) and respiration ( ) fluxes to assess the temporal variability of NEE over south-western Europe for 2001-2022. Warming temperatures lengthen growing seasons, causing an increase in GEE, which is mostly compensated by a similar increment in .

View Article and Find Full Text PDF

Global oceans are warming and acidifying because of increasing greenhouse gas emissions that are anticipated to have cascading impacts on marine ecosystems and organisms, especially those essential for biodiversity and food security. Despite this concern, there remains some skepticism about the reproducibility and reliability of research done to predict future climate change impacts on marine organisms. Here, we present meta-analyses of over two decades of research on the climate change impacts on an ecologically and economically valuable Sydney rock oyster, .

View Article and Find Full Text PDF

Assessing U.S. public perceptions of global warming using social survey and climate data.

MethodsX

June 2025

College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL 36849, United States.

This paper presents a methodological approach for assessing the relationship between weather patterns, regional climate trends, and public perceptions of global warming in the United States with control of socioeconomic, political, and ideological variables. We combined social survey data from the Gallup Poll Social Series (GPSS) with environmental data from the National Oceanic and Atmospheric Administration (NOAA) and the PRISM Climate Group. Logistic regression models were employed, enhanced by Eigenvector Spatial Filtering (ESF) to address spatial autocorrelation.

View Article and Find Full Text PDF

Climate change can impact marine ecosystems through many biological and ecological processes. Ecosystem models are one tool that can be used to simulate how the complex impacts of climate change may manifest in a warming world. In this study, we used an end-to-end Atlantis ecosystem model to compare and contrast the effects of climate-driven species redistribution and projected temperature from three separate climate models on species of key commercial importance in the California Current Ecosystem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!