Semiconductor nanowire (NW) lasers are a promising technology for the realization of coherent optical sources with ultrasmall footprint. To fully realize their potential in on-chip photonic systems, scalable methods are required for dealing with large populations of inhomogeneous devices that are typically randomly distributed on host substrates. In this work two complementary, high-throughput techniques are combined: the characterization of nanowire laser populations using automated optical microscopy, and a high-accuracy transfer-printing process with automatic device spatial registration and transfer. Here, a population of NW lasers is characterized, binned by threshold energy density, and subsequently printed in arrays onto a secondary substrate. Statistical analysis of the transferred and control devices shows that the transfer process does not incur measurable laser damage, and the threshold binning can be maintained. Analysis on the threshold and mode spectra of the device populations proves the potential for using NW lasers for integrated systems fabrication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146854PMC
http://dx.doi.org/10.1021/acs.nanolett.9b05078DOI Listing

Publication Analysis

Top Keywords

nanowire laser
8
characterization selection
4
selection microassembly
4
microassembly nanowire
4
laser systems
4
systems semiconductor
4
semiconductor nanowire
4
nanowire lasers
4
lasers promising
4
promising technology
4

Similar Publications

Tightly confined plasmons in metal nanogaps are highly sensitive to surface inhomogeneities and defects due to the nanoscale optical confinement, but tracking and monitoring their location is hard. Here, we probe a 1-D extended nanocavity using a plasmonic silver nanowire (AgNW) on mirror geometry. Morphological changes inside the nanocavity are induced locally using optical excitation and probed locally through simultaneous measurements of surface enhanced Raman scattering (SERS) and dark-field spectroscopy.

View Article and Find Full Text PDF

Nanoscale light sources are demanded vigorously due to rapid development in photonic integrated circuits (PICs). III-V semiconductor nanowire (NW) lasers have manifested themselves as indispensable components in this field, associated with their extremely compact footprint and ultra-high optical gain within the 1D cavity. In this study, the carrier concentrations of indium phosphide (InP) NWs are actively controlled to modify their emissive properties at room temperature.

View Article and Find Full Text PDF

Coupling Trapped Ions to a Nanomechanical Oscillator.

Phys Rev Lett

November 2024

Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.

Cold ions in traps are well-established, highly controllable systems with a wide variety of applications in quantum science, precision spectroscopy, clocks, and chemistry. Nanomechanical oscillators are used in advanced sensing applications and for exploring the border between classical and quantum physics. Here, we report on the implementation of a hybrid system combining a metallic nanowire with laser-cooled ions in a miniaturized ion trap.

View Article and Find Full Text PDF

Quantized Acoustoelectric Floquet Effect in Quantum Nanowires.

Phys Rev Lett

November 2024

Department of Physics, IQIM, California Institute of Technology, Pasadena, California 91125, USA.

External coherent fields can drive quantum materials into nonequilibrium states, revealing exotic properties that are unattainable under equilibrium conditions-an approach known as "Floquet engineering." While optical lasers have commonly been used as the driving fields, recent advancements have introduced nontraditional sources, such as coherent phonon drives. Building on this progress, we demonstrate that driving a metallic quantum nanowire with a coherent wave of terahertz phonons can induce an electronic steady state characterized by a persistent quantized current along the wire.

View Article and Find Full Text PDF

Growth and properties of hybrid Au-CoNinanowires embedded in SrTiO/SrTiO(001).

Nanotechnology

December 2024

Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, UMR7588, F-75005 Paris, France.

We present a sequential growth scheme based on pulsed laser deposition, which yields dense arrays of ultrathin, match-shaped Au/CoNi nanopillars, vertically embedded in SrTiOthin films. Analysis of the magnetic properties of these nanocomposites reveals a pronounced out-of-plane anisotropy. We show that the latter not only results from the peculiar nanoarchitecture of the hybrid films but is further enhanced by strong magneto-structural coupling of the wires to the surrounding matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!