The organosilicon reagent 1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene 2 plays the binary role of the simultaneous reduction of GeCl .dioxane 1 dissolved in oleylamine to Ge nanocrystals and the formation of graphitic sheets under hot-injection conditions. This colloidal synthetic route to germanium nanocrystals embedded on N-doped graphitic nanosheets Ge/NG is free of any template or catalyst and involves easy purification techniques. The Ge/NG/C obtained after carbonization has been explored for anode performance in lithium-ion batteries. Both Ge/NG and Ge/NG/C can be obtained on a gram scale and are bottleable under argon for months.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201901704DOI Listing

Publication Analysis

Top Keywords

coherent solution-phase
4
solution-phase synthesis
4
synthesis germanium-graphitic
4
germanium-graphitic nanocomposite
4
nanocomposite evaluation
4
evaluation lithium-ion
4
lithium-ion battery
4
battery anodes
4
anodes non-innocent
4
non-innocent role
4

Similar Publications

Silicon particles of intermediate sizes (75-200 nm) scatter visible wavelengths, making them promising candidates for optical devices. The solution synthesis of silicon particles in this size range, however, has proved challenging for chemists over the past few decades. Here, a solution-phase synthesis provides a pathway toward reaching size tunability between 45 and 230 nm via changing the reactant ratio in the reaction between a silicon Zintl phase (NaSi) with an amidinate-stabilized Si(IV) coordination complex.

View Article and Find Full Text PDF

Time-resolved cryogenic electron tomography for the study of transient cellular processes.

Mol Biol Cell

July 2024

Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.

Cryogenic electron tomography (cryo-ET) is the highest resolution imaging technique applicable to the life sciences, enabling subnanometer visualization of specimens preserved in their near native states. The rapid plunge freezing process used to prepare samples lends itself to time-resolved studies, which researchers have pursued for in vitro samples for decades. Here, we focus on developing a freezing apparatus for time-resolved studies in situ.

View Article and Find Full Text PDF

The development of many quantum optical technologies depends on the availability of single quantum emitters with near-perfect coherence. Systematic improvement is limited by a lack of understanding of the microscopic energy flow at the single-emitter level and ultrafast timescales. Here we utilize a combination of fluorescence correlation spectroscopy and ultrafast spectroscopy to capture the sample-averaged dynamics of defects with single-particle sensitivity.

View Article and Find Full Text PDF

Nitrogen-vacancy (NV) centers in diamond are a promising platform for nanoscale NMR sensing. Despite significant progress toward using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. Such sensing requires that target molecules are immobilized within nanometers of NV centers with long spin coherence.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) with adsorbed single-stranded DNA (ssDNA) are applied as sensors to investigate biological systems, with potential applications ranging from clinical diagnostics to agricultural biotechnology. Unique ssDNA sequences render SWCNTs selectively responsive to target analytes such as (GT)-SWCNTs recognizing the neuromodulator, dopamine. It remains unclear how the ssDNA conformation on the SWCNT surface contributes to functionality, as observations have been limited to computational models or experiments under dehydrated conditions that differ substantially from the aqueous biological environments in which the nanosensors are applied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!