Herein, we report discrimination of dicarboxylic acids - fumaric acid (FA) and maleic acid (MA) - exhibiting geometrical isomerism, using nanoclusters based luminescent probe having excitation under broad day light. The luminescent probe was designed via complexation reaction between zinc ions and ligands (mercaptopropioinc acid; MPA) stabilizing the gold nanoclusters. This resulted in formation of nanoaggregates exhibiting bright green luminescence upon excitation at 450 nm capable of discriminating between FA and MA upto nanomolar level. The basis of discrimination has been attributed to deprotonation of FA and MA following interaction with MPA moieties present on the surface of the nanoaggregates and being governed by the stability of the respective conjugate base of the geometrical isomers of the dicarboxylic acids. As a consequence of different extent of deprotonation of FA and MA upon interaction with the cluster aggregates, different effect on the luminescence of the aggregates was observed, thus enabling discernible fluorimetric discrimination between FA and MA under visible light excitation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201901044DOI Listing

Publication Analysis

Top Keywords

fluorimetric discrimination
8
geometrical isomers
8
dicarboxylic acids
8
luminescent probe
8
deprotonation interaction
8
zinc-ion-induced aggregation
4
aggregation gold
4
gold clusters
4
clusters visible-light-excitation-based
4
visible-light-excitation-based fluorimetric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!