There has been a recent increase in the diagnosis of diseases through radiographic images such as x-rays, magnetic resonance imaging, and computed tomography. The outcome of a radiological diagnostic test is often in the form of discrete ordinal data, and we usually summarize the performance of the diagnostic test using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). The ROC curve will be concave and called proper when the outcomes of the diagnostic test in the actually positive subjects are higher than in the actually negative subjects. The diagnostic test for disease detection is clinically useful when a ROC curve is proper. In this study, we develop a hierarchical Bayesian model to estimate the proper ROC curve and AUC using stochastic ordering in several domains when the outcome of the diagnostic test is discrete ordinal data and compare it with the model without stochastic ordering. The model without stochastic ordering can estimate the improper ROC curve with a nonconcave shape or a hook when the true ROC curve of the population is a proper ROC curve. Therefore, the model with stochastic ordering is preferable over the model without stochastic ordering to estimate the proper ROC curve with clinical usefulness for ordinal data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.8493DOI Listing

Publication Analysis

Top Keywords

roc curve
32
stochastic ordering
24
diagnostic test
20
ordinal data
16
model stochastic
16
proper roc
12
curve
9
receiver operating
8
operating characteristic
8
discrete ordinal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!