The hair follicle is a dynamic structure which contains different niches for stem cells, therefore; it has been considered as valuable and rich sources of stem cells, due to easy access, multipotency and non-oncogenic properties. In the present study, the differentiation capacities of hair follicle stem cells into bone cells on the natural collagen scaffolds were investigated. The stem cells were extracted from the hair follicle bulge area of male Wistar rats' whisker and cultured until 3rd passage, then osteogenic differentiations were induced by culturing the cells in the specific osteogenic medium. After 3 weeks, the differentiation parameters, including morphological changes, levels of calcification and expression of the bone specific genes were detected. The hydrogel preparation and scaffold fabrication was carried out using the extracted collagen and was studied by scanning electron microscope. Comparison of the stem cells' growth and changes on the scaffold and non-scaffold conditions showed that, in the both situation, the cells revealed differentiation signs of osteocytes, including large and cubic morphology with a star-shaped nucleus. Staining by Alizarin-red and Von-Kossa methods showed the presence of red and black calcium mass on the scaffold. Expression of the osteopontin and alkaline phosphatase genes confirmed the differentiation. Considerable porosity in the surface of the scaffold was recorded by scanning electron microscopy, which made it convenient for cells' attachment and growth. The data showed that the bulge stem cells possess significant capacity for osteoblastic differentiation and collagen scaffolds were found to be an appropriate matrix for growth and differentiation of the cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10561-020-09812-9 | DOI Listing |
J Clin Invest
January 2025
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, United States of America.
Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.
Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.
Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).
Adv Biotechnol (Singap)
January 2025
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
June 2024
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!