Bacterial infection not only stimulates innate immune responses but also activates coagulation cascades. Overactivation of the coagulation system in bacterial sepsis leads to disseminated intravascular coagulation (DIC), a life-threatening condition. However, the mechanisms by which bacterial infection activates the coagulation cascade are not fully understood. Here we show that type 1 interferons (IFNs), a widely expressed family of cytokines that orchestrate innate antiviral and antibacterial immunity, mediate bacterial infection-induced DIC by amplifying the release of high-mobility group box 1 (HMGB1) into the bloodstream. Inhibition of the expression of type 1 IFNs and disruption of their receptor IFN-α/βR or downstream effector (eg, HMGB1) uniformly decreased gram-negative bacteria-induced DIC. Mechanistically, extracellular HMGB1 markedly increased the procoagulant activity of tissue factor by promoting the externalization of phosphatidylserine to the outer cell surface, where phosphatidylserine assembles a complex of cofactor-proteases of the coagulation cascades. These findings not only provide novel insights into the link between innate immune responses and coagulation, but they also open a new avenue for developing novel therapeutic strategies to prevent DIC in sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118812PMC
http://dx.doi.org/10.1182/blood.2019002282DOI Listing

Publication Analysis

Top Keywords

type interferons
8
bacterial infection
8
innate immune
8
immune responses
8
activates coagulation
8
coagulation cascades
8
coagulation
7
role type
4
interferons coagulation
4
coagulation induced
4

Similar Publications

Corrigendum to "Antiviral effects of duck type I and type III interferons against Duck Tembusu virus in vitro and in vivo" [Vet. Microbiol. 287 (2023) 109889].

Vet Microbiol

December 2024

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China. Electronic address:

View Article and Find Full Text PDF

In systemic lupus erythematosus (SLE), adaptive immunity is activated by the stimulation of innate immunity, leading to the development of autoreactive T cells and activation and differentiation of B cells. Cytokine signalling plays an essential role in the pathogenesis and progression of this disease. In particular, the differentiation and function of CD4+ T cell subsets, which play a central role in SLE pathology, are significantly altered by cytokine stimulation.

View Article and Find Full Text PDF

Human papillomavirus (HPV) infections are prevalent skin infectious diseases. While there are no specific anti-HPV drugs available, understanding the viral mechanisms could lead to novel therapeutic strategies. Verruca vulgaris, a common HPV infection, is frequently encountered in dermatological clinics.

View Article and Find Full Text PDF

Total synthesis and target identification of marine cyclopiane diterpenes.

Nat Commun

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.

View Article and Find Full Text PDF

Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by an overactive immune response, particularly involving excessive production of type I interferons. This overproduction is driven by the phosphorylation of IRF7, a crucial factor in interferon gene activation. Current treatments for SLE are often not very effective and can have serious side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!