A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A rational design of efficient trifunctional electrocatalysts derived from tailored Co-functionalized anionic metal-organic frameworks. | LitMetric

Strategies for developing efficient energy conversion and storage devices that have been optimized by designing electrode materials is a critical challenge for researchers. Herein, we report the design and synthesis of a series of Co@NC trifunctional electrocatalysts derived from rationally designed cobalt-added anion MOF precursors and preliminarily reveal the relationship between the precursor and corresponding efficient electrocatalysts. Benefiting from the special composition of Co-doped anion MOFs involving Co chelates as the Co sources, the resulting CoT@NC electrocatalyst possesses abundant Co/Co-N/Co-O and multiple active nitrogen sites that are evenly distributed. As expected, the rich variety of active species and hierarchical pore structures endow CoT@NC with excellent performances toward ORR, HER, and OER, including a high half-wave potential value of 0.86 V for ORR and low overpotential values for OER (350 mV) and HER (209 mV) at 10 mA cm in an alkaline solution. Moreover, we assembled a conventional Zn-air battery with CoT@NC as the air-cathode catalyst, which exhibited excellent rechargeable performance and ultrahigh durability. Moreover, CoT@NC coated on Ni foam was used as both anode and cathode for the overall water-splitting process, which needed a bias voltage of 1.70 V to achieve a current density of 10 mA cm. This study sheds light on the design, fabrication, and regulation of highly active cobalt-based electrocatalysts with abundant active sites and tunable pore structures for electrocatalysis and other applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt04930dDOI Listing

Publication Analysis

Top Keywords

trifunctional electrocatalysts
8
electrocatalysts derived
8
pore structures
8
rational design
4
design efficient
4
efficient trifunctional
4
electrocatalysts
4
derived tailored
4
tailored co-functionalized
4
co-functionalized anionic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!