Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Leveraging existing presence records and geospatial datasets, species distribution modeling has been widely applied to informing species conservation and restoration efforts. Maxent is one of the most popular modeling algorithms, yet recent research has demonstrated Maxent models are vulnerable to prediction errors related to spatial sampling bias and model complexity. Despite elevated rates of biodiversity imperilment in stream ecosystems, the application of Maxent models to stream networks has lagged, as has the availability of tools to address potential sources of error and calculate model evaluation metrics when modeling in nonraster environments (such as stream networks). Herein, we use Maxent and customized R code to estimate the potential distribution of paddlefish () at a stream-segment level within the Arkansas River basin, USA, while accounting for potential spatial sampling bias and model complexity. Filtering the presence data appeared to adequately remove an eastward, large-river sampling bias that was evident within the unfiltered presence dataset. In particular, our novel riverscape filter provided a repeatable means of obtaining a relatively even coverage of presence data among watersheds and streams of varying sizes. The greatest differences in estimated distributions were observed among models constructed with default versus AIC-selected parameterization. Although all models had similarly high performance and evaluation metrics, the AIC-selected models were more inclusive of westward-situated and smaller, headwater streams. Overall, our results solidified the importance of accounting for model complexity and spatial sampling bias in SDMs constructed within stream networks and provided a roadmap for future paddlefish restoration efforts in the study area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988546 | PMC |
http://dx.doi.org/10.1002/ece3.5913 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!