Background: Blade plates are frequently used for internal fixation following proximal femoral varus rotational osteotomy to treat hip dysplasia in children with cerebral palsy. Recently, cannulated blade plates with the option for a proximal locking screw have demonstrated ease of insertion and low complication rates. Although there are two commonly used blade plates with a proximal screw option, no comparison of their biomechanical profiles has been undertaken.

Questions/purposes: Our study sought to compare the structural properties under axial loading, as well as the biomechanical contribution of a proximal screw, of two different 90° cannulated blade plates designed for pediatric proximal femurs. Plate A has a hole distal to the blade designed to attach a plate inserter, through which a 3.5-mm non-locking cortical screw could be placed. Plate B has a threaded hole distal to the blade designed to accept a 3.5-mm locking screw.

Methods: Plate A and plate B were inserted into 33 left pediatric synthetic proximal femurs. Axial loading to failure of plate A with and without a proximal screw was compared to that of plate B with and without a proximal screw. An additional 10 samples using plate B, with and without a proximal locking screw, were tested in tension to quantify the effect of the proximal screw on pullout strength.

Results: Plate B failed at a higher axial load than plate A. The addition of a proximal screw did not affect the axial load to failure for either plate. Pullout testing revealed that blade plates fixed with the proximal screw failed in tension at a significantly higher load (856.3 ± 120.9 N) than those without proximal fixation (68.1 ± 9.3 N,  < 0.001).

Conclusions: Plate B failed at a higher axial load in biomechanical testing, likely related to differences in its design. The addition of a proximal screw did not increase the axial loading properties of the blade plate construct but did increase the pullout strength by a factor of 12. These results may be used to influence implant selection and post-operative rehabilitation following proximal femoral osteotomies in children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6973987PMC
http://dx.doi.org/10.1007/s11420-019-09675-1DOI Listing

Publication Analysis

Top Keywords

proximal screw
28
blade plates
20
proximal
14
plate
12
plate proximal
12
screw
10
blade
8
proximal femoral
8
cannulated blade
8
proximal locking
8

Similar Publications

Introduction: Posterior cruciate ligament (PCL) avulsion fractures of the tibia with ipsilateral tibial shaft represent a rare but challenging orthopedic injury, necessitating careful consideration of surgical interventions for optimal outcomes. This case report presents the successful management of tibial shaft fracture (proximal 1/3rd junction) along with ipsilateral PCL avulsion fracture of tibia using a novel approach using open reduction internal fixation (ORIF) of tibial shaft with Locking compression plate (LCP) with cannulated cancellous screw and spiked washer fixation of PCL avulsion. There are no case reports or research articles available for the management of PCL avulsion fracture of tibia associated with ipsilateral tibial shaft fracture.

View Article and Find Full Text PDF

Background: To explore the advantages of a lateral tibial locking plate combined with Jail screw fixation in the treatment of anterolateral tibial plateau collapse fracture (ATPCF).

Methods: A retrospective analysis was conducted on patients with ATPCFs admitted to our hospital from February 2019 to February 2023. Twenty-six patients were successfully included, including 15 males and 11 females, with an average age of 58.

View Article and Find Full Text PDF

The Predictive Value of Multifidus Degeneration in Osteoporotic Vertebral Compression Fracture Patients with Kyphosis Deformity.

Spine J

January 2025

Orthopedic Department, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Spinal Disease Research, 49 North Garden Road, Haidian District, Beijing 100191, China. Electronic address:

Background Context: Osteoporotic vertebral compression fracture (OVCF) causes pain, kyphosis and neurological damage, which significantly affect patients' quality of life. Patients with OVCF are often elderly and have severe osteoporosis, which makes preoperative symptom more serious, postoperative recovery worse and the incidence of postoperative complications high. The paraspinal muscles have been well studied in adult spinal deformities, but there is no conclusive evidence that their findings can be applied to OVCF.

View Article and Find Full Text PDF

Proximal femoral fractures are particularly common in older adults, and cases requiring conversion to total hip arthroplasty may arise because of treatment failure or osteoarthritis. Fractures around the distal screw removal holes can be problematic. This study aimed to analyze the relationship between stem length and femoral stress distribution to determine the optimal stem length.

View Article and Find Full Text PDF

Purpose: This study aims to describe a fixation technique for coronoid fractures using suture buttons, and to biomechanically evaluate this technique in comparison to screw fixation as a time-zero pilot study.

Methods: An O'Driscoll type 2 anteromedial coronoid facet (AMCF) fracture was simulated in 20 fresh-frozen human elbows. The specimens were randomized into two groups and fracture fixation was performed with either a suture button system or a 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!