The development and deployment of high-yielding stress tolerant maize hybrids are important components of the efforts to increase maize productivity in eastern Africa. This study was conducted to: i) evaluate selected, stress-tolerant maize hybrids under farmers' conditions; ii) identify farmers' selection criteria in selecting maize hybrids; and iii) have farmers evaluate the new varieties according to those criteria. Two sets of trials, one with 12 early-to-intermediate maturing and the other with 13 intermediate-to-late maturing hybrids, improved for tolerance to multiple stresses common in farmers' fields in eastern Africa (drought, northern corn leaf blight, gray leaf spot, common rust, maize streak virus), were evaluated on-farm under smallholder farmers' conditions in a total of 42 and 40 environments (site-year-management combinations), respectively, across Kenya, Uganda, Tanzania and Rwanda in 2016 and 2017. Farmer-participatory variety evaluation was conducted at 27 sites in Kenya and Rwanda, with a total of 2025 participating farmers. Differential performance of the hybrids was observed under low-yielding (<3 t ha) and high-yielding (>3 t ha) environments. The new stress-tolerant maize hybrids had a much better grain-yield performance than the best commercial checks under smallholder farmer growing environments but had a comparable grain-yield performance under optimal conditions. These hybrids also showed better grain-yield stability across the testing environments, providing an evidence for the success of the maize-breeding approach. In addition, the new stress- tolerant varieties outperformed the internal genetic checks, indicating genetic gain under farmers' conditions. Farmers gave high importance to grain yield in both farmer-stated preferences (through scores) and farmer-revealed preferences of criteria (revealed by regressing the overall scores on the scores for the individual criteria). The top-yielding hybrids in both maturity groups also received the farmers' highest overall scores. Farmers ranked yield, early maturity, cob size and number of cobs as the most important traits for variety preference. The criteria for the different hybrids did not differ between men and women farmers. Farmers gave priority to many different traits in addition to grain yield, but this may not be applicable across all maize-growing regions. Farmer-stated importance of the different criteria, however, were quite different from farmer- revealed importance. Further, there were significant differences between men and women in the revealed-importance of the criteria. We conclude that incorporating farmers' selection criteria in the stage-gate advancement process of new hybrids by the breeders is useful under the changing maize-growing environments in sub-Saharan Africa, and recommended to increase the turnover of new maize hybrids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961973 | PMC |
http://dx.doi.org/10.1016/j.fcr.2019.107693 | DOI Listing |
Sci Rep
January 2025
Department of Horticulture, Karaj Branch, Islamic Azad University, Karaj, Iran.
In maize breeding, enhancing yield through genetic insights is crucial yet challenged by the complex interplay of agronomic traits. This study utilized a diallel mating design involving nine advanced early maize lines to dissect the genetic architecture underlying key agronomic traits and their impact on yield. Over two consecutive years (2018-2019 and 2019-2020), 36 hybrids derived from these lines were grown across two locations, Karaj, Alborz, Iran and Kermanshah (2019-2020), Iran, in a randomized complete block design with three replications.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
ICAR-Central Potato Research Institute, Bemloi, Shimla, Himachal Pradesh 171001 India.
Following the identification of the self-compatibility gene () in diploid potatoes two decades ago, the breeding of inbred based diploid hybrid potatoes made its way. Tetraploid potatoes have a long history of cultivation through domestication and selection. Tetrasomic inheritance, heterozygosity and clonal propagation complicate genetic studies, resulting in a low genetic gain in potato breeding.
View Article and Find Full Text PDFSci Rep
December 2024
International Maize and Wheat Improvement Center (CIMMYT), United Nations Avenue, Gigiri, PO Box 25171, Nairobi, Kenya.
Hybrid maize seed production in Africa is dependent upon manual detasseling of the female parental lines, often resulting in plant damage that can lead to reduced seed yields on those detasseled lines. Additionally, incomplete detasseling can result in hybrid purity issues that can lead to production fields being rejected. A unique nuclear genetic male sterility seed production technology, referred to as Ms44-SPT, was developed to avoid hybrid seed loss and to improve the purity and quality of hybrid maize production.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China.
The increasing development of new genetically modified organisms underscores the critical need for comprehensive safety assessments, emphasizing the significance of molecular evidence such as gene integration, copy numbers, and adjacent sequences. In this study, the maize nitrate-efficient utilization gene ZmNRT1.1 A was introduced into maize variety y822 using transgenic technology, producing transgenic maize events ND4401 and ND4403 with enhanced tolerance to low nitrogen stress.
View Article and Find Full Text PDFNat Commun
December 2024
Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!