AI Article Synopsis

  • Newly synthesized histone H4, important for DNA replication, gets acetylated at specific lysine sites, with HDAC1 and HDAC2 helping to remove these acetyls as chromatin matures.
  • Using CRISPR-Cas9, researchers found that HDAC1 and HDAC2 can't fully compensate for each other in this process, revealing the complex dynamics of histone modification.
  • The protein ATAD2, which binds to acetylated H4 and is linked to cancer, is overexpressed in certain cells and helps maintain H4 acetylation levels; its depletion affects RNA synthesis and replication fork progression in these cells.

Article Abstract

Newly synthesized histone H4 that is incorporated into chromatin during DNA replication is acetylated on lysines 5 and 12. Histone deacetylase 1 (HDAC1) and HDAC2 are responsible for reducing H4 acetylation as chromatin matures. Using CRISPR-Cas9-generated - or -null fibroblasts, we determined that HDAC1 and HDAC2 do not fully compensate for each other in removing acetyls on H4 Proteomics of nascent chromatin and proximity ligation assays with newly replicated DNA revealed the binding of ATAD2, a bromodomain-containing posttranslational modification (PTM) reader that recognizes acetylated H4. ATAD2 is a transcription facilitator overexpressed in several cancers and in the simian virus 40 (SV40)-transformed human fibroblast model cell line used in this study. The recruitment of ATAD2 to nascent chromatin was increased in cells over the wild type, and ATAD2 depletion reduced the levels of nascent chromatin-associated, acetylated H4 in wild-type and cells. We propose that overexpressed ATAD2 shifts the balance of H4 acetylation by protecting this mark from removal and that HDAC2 but not HDAC1 can effectively compete with ATAD2 for the target acetyls. ATAD2 depletion also reduced global RNA synthesis and nascent DNA-associated RNA. A moderate dependence on ATAD2 for replication fork progression was noted only for cells overexpressing the protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156220PMC
http://dx.doi.org/10.1128/MCB.00421-19DOI Listing

Publication Analysis

Top Keywords

nascent chromatin
12
atad2
9
hdac1 hdac2
8
atad2 depletion
8
depletion reduced
8
nascent
5
chromatin
5
mutual balance
4
histone
4
balance histone
4

Similar Publications

Transcription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote .

View Article and Find Full Text PDF

Convergent transcription, that is, the collision of sense and antisense transcription, is ubiquitous in mammalian genomes and believed to diminish RNA expression. Recently, antisense transcription downstream of promoters was found to be surprisingly prevalent. However, functional characteristics of affected promoters are poorly investigated.

View Article and Find Full Text PDF

Profiling the epigenome using long-read sequencing.

Nat Genet

January 2025

Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain.

The advent of single-molecule, long-read sequencing (LRS) technologies by Oxford Nanopore Technologies and Pacific Biosciences has revolutionized genomics, transcriptomics and, more recently, epigenomics research. These technologies offer distinct advantages, including the direct detection of methylated DNA and simultaneous assessment of DNA sequences spanning multiple kilobases along with their modifications at the single-molecule level. This has enabled the development of new assays for analyzing chromatin states and made it possible to integrate data for DNA methylation, chromatin accessibility, transcription factor binding and histone modifications, thereby facilitating comprehensive epigenomic profiling.

View Article and Find Full Text PDF

Pervasive RNA-binding protein enrichment on TAD boundaries regulates TAD organization.

Nucleic Acids Res

January 2025

Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.

Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization.

View Article and Find Full Text PDF

H3K56 acetylation regulates chromatin maturation following DNA replication.

Nat Commun

January 2025

Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.

Following DNA replication, the newly reassembled chromatin is disorganized and must mature to its steady state to maintain both genome and epigenome integrity. However, the regulatory mechanisms governing this critical process remain poorly understood. Here, we show that histone H3K56 acetylation (H3K56ac), a mark on newly-synthesized H3, facilitates the remodeling of disorganized nucleosomes in nascent chromatin, and its removal at the subsequent G2/M phase of the cell cycle marks the completion of chromatin maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!