Representational Neural Mapping of Dexterous Grasping Before Lifting in Humans.

J Neurosci

Department of Psychological and Brain Sciences, University of California, Santa Barbara, 93106

Published: March 2020

The ability of humans to reach and grasp objects in their environment has been the mainstay paradigm for characterizing the neural circuitry driving object-centric actions. Although much is known about hand shaping, a persistent question is how the brain orchestrates and integrates the grasp with lift forces of the fingers in a coordinated manner. The objective of the current study was to investigate how the brain represents grasp configuration and lift force during a dexterous object-centric action in a large sample of male and female human subjects. BOLD activity was measured as subjects used a precision-grasp to lift an object with a center of mass (CoM) on the left or right with the goal of minimizing tilting the object. The extent to which grasp configuration and lift force varied between left and right CoM conditions was manipulated by grasping the object collinearly (requiring a non-collinear force distribution) or non-collinearly (requiring more symmetrical forces). Bayesian variational representational similarity analyses on fMRI data assessed the evidence that a set of cortical and cerebellar regions were sensitive to grasp configuration or lift force differences between CoM conditions at differing time points during a grasp to lift action. In doing so, we reveal strong evidence that grasping and lift force are not represented by spatially separate functionally specialized regions, but by the same regions at differing time points. The coordinated grasp to lift effort is shown to be under dorsolateral (PMv and AIP) more than dorsomedial control, and under SPL7, somatosensory PSC, ventral LOC and cerebellar control. Clumsy disasters such as spilling, dropping, and crushing during our daily interactions with objects are a rarity rather than the norm. These disasters are avoided in part as a result of our orchestrated anticipatory efforts to integrate and coordinate grasping and lifting of object interactions, all before the lift of an object even commences. How the brain orchestrates this integration process has been largely neglected by historical approaches independently and solely focusing on reaching and grasping and the neural principles that guide them. Here, we test the extent to which grasping and lifting are represented in a spatially or temporally distinct manner and identified strong evidence for the consecutive emergence of sensitivity to grasping, then lifting within the same region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096143PMC
http://dx.doi.org/10.1523/JNEUROSCI.2791-19.2020DOI Listing

Publication Analysis

Top Keywords

grasping lifting
16
lift force
16
grasp lift
12
grasp configuration
12
configuration lift
12
lift
9
brain orchestrates
8
lift object
8
differing time
8
time points
8

Similar Publications

Soft actuators for intelligent robots require further elaboration to improve their biomedical applicability, which has led to the development of a series of flexible stimulus-responsive materials. However, fabricating degradable soft actuators that exhibit synergistic color and shape changes in response to environmental stimuli remains challenging. Here, we developed a soft actuating gel based on carbon dots (CDs) that are chemically cross-linked with sodium alginate.

View Article and Find Full Text PDF

Research on the operational properties of the soft gripper pads.

Sci Rep

December 2024

Division of Mechatronic Devices, Institute of Mechanical Technology, Poznan University of Technology, 60-965, Poznan, Poland.

Grippers are commonly used as a technological tooling for manipulators. They enable robots to interact with objects in their work area. Grippers have a wide range of differentiation focused on the operation performed and the properties (e.

View Article and Find Full Text PDF

Control of precision grip in children with heavy prenatal alcohol exposure.

Alcohol Clin Exp Res (Hoboken)

December 2024

Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, California, USA.

Background: Fine motor skill deficits have been reported for children with histories of prenatal alcohol exposure, but little is known whether impaired motor skill extends to the regulation of precision grip control.

Methods: Children with (n = 15) and without (n = 17) histories of heavy prenatal alcohol exposure used their dominant hand to grasp, lift, and hold in space a small-instrumented object with a mass of 19 g. Object mass was also experimentally increased by separately adding two aluminum cubes with mass of 200 and 400 g.

View Article and Find Full Text PDF

Water-hose tool use and showering behavior by Asian elephants.

Curr Biol

December 2024

Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany. Electronic address:

Since Jane Goodall's famous observations of stick tool use by chimpanzees, animal tool use has been observed in numerous species, including many primates, dolphins, and birds. Some animals, such as New Caledonian crows, even craft tools. Elephants frequently use tools and also modify them.

View Article and Find Full Text PDF

The purpose of this study was to compare the joint, racket, and ball kinematics between the different levels of male tennis players in tennis serve-return at slow and high serve speeds. Thirty male tennis players were divided into an advanced group (n = 15) and an intermediate group (n = 15) based on skill level. The advanced group and intermediate group matched shake hand-grip players performed serve-receive test at the different serve speeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!