The co-feeding of scrap tires pyrolysis oil (STPO) on the catalytic cracking of vacuum gasoil (VGO) has been investigated with the aim of exploring the capacity of the refinery fluid catalytic cracking (FCC) unit to upgrade discarded tires at large-scale. The runs have been carried out in a CREC (Chemical Reactor Engineering Centre) riser simulator reactor that mimics the behavior of the industrial unit at the following conditions: 500-560 °C; catalyst/oil ratio, 3-7 g g; contact time, 6 s. Obtained results with the blend of 20 wt% STPO in VGO have been compared with those obtained in the cracking of the pure streams, i.e., STPO and VGO, to get a proper idea of the synergetic effects that could be involved in the co-feeding. This way, when the STPO is co-fed with the VGO the production of naphtha (C-C) and light cycle oil (C-C) lumps are maximized, as the over-cracking reactions that convert them into gaseous products (C-C) are mitigated. Consequently, the co-feeding promotes the production of high-interest hydrocarbons for refineries. Additionally, the naphtha obtained in the cracking of the blend shows a lower content of paraffins and naphthenes than that obtained with the VGO, and higher of olefins and aromatics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2020.01.026DOI Listing

Publication Analysis

Top Keywords

catalytic cracking
16
scrap tires
8
tires pyrolysis
8
pyrolysis oil
8
cracking vacuum
8
vacuum gasoil
8
fluid catalytic
8
stpo vgo
8
cracking
6
vgo
5

Similar Publications

Carbon Dots-Modified Hollow Mesoporous Photonic Crystal Materials for Sensitivity- and Selectivity-Enhanced Sensing of Chloroform Vapor.

Nanomicro Lett

December 2024

Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, People's Republic of China.

Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers, because of their potential harm to the respiratory system, nervous system, skin, and eyes. However, research on chloroform vapor sensing is still in its early stages, primarily due to the lack of specific recognition motif. Here we report a mesoporous photonic crystal sensor incorporating carbon dots-based nanoreceptor (HMSS@CDs-PCs) for enhanced chloroform sensing.

View Article and Find Full Text PDF

Redefining the Role of Cobalt Oxide in Ethane Dehydroaromatization: Insights into Enhanced Catalytic Activity and Stability.

ACS Appl Mater Interfaces

December 2024

Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Cobalt is recognized as an active catalyst in ethane dehydroaromatization (EDA) reactions due to its efficient ethane cracking capability. In order to optimize cobalt's strong ethane cracking capability, it was loaded onto HZSM-5 zeolite through impregnation. This study was conducted with Co-loaded HZSM-5 catalysts with an incipient wetness impregnation method and witnessed an increase of catalytic activity with a long induction period.

View Article and Find Full Text PDF

Online Monitoring of Catalytic Processes by Fiber-Enhanced Raman Spectroscopy.

Sensors (Basel)

November 2024

Savannah River National Laboratory, 301 Gateway Drive, Aiken, SC 29803, USA.

An innovative solution for real-time monitoring of reactions within confined spaces, optimized for Raman spectroscopy applications, is presented. This approach involves the utilization of a hollow-core waveguide configured as a compact flow cell, serving both as a conduit for Raman excitation and scattering and seamlessly integrating into the effluent stream of a cracking catalytic reactor. The analytical technique, encompassing device and optical design, ensures robustness, compactness, and cost-effectiveness for implementation into process facilities.

View Article and Find Full Text PDF

The production of coal gangue, a by-product of coal mining and washing, is rapidly increasing due to growing energy consumption. As the accumulated coal gangue has not been appropriately utilized, this has resulted in a squander of resources, waste disposal problems, and environmental pollution issues. However, coal gangue, a form of solid waste, exhibits various potential applications in the field of recycling.

View Article and Find Full Text PDF

A stable zeolite with atomically ordered and interconnected mesopore channel.

Nature

December 2024

Laboratoire Catalyse et Spectrochimie, Normandie University, ENSICAEN, UNICAEN, CNRS, Caen, France.

Zeolites are crystalline microporous materials constructed by corner-sharing tetrahedra (SiO and AlO), with many industrial applications as ion exchangers, adsorbents and heterogeneous catalysts. However, the presence of micropores impedes the use of zeolites in areas dealing with bulky substrates. Introducing extrinsic mesopores, that is, intercrystal/intracrystal mesopores, in zeolites is a solution to overcome the diffusion barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!